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Abstract

Empirical evidence suggests that individuals selectively avoid information depend-

ing on past choices. We address these findings by studying an agent whose choice

behavior can be modeled as if she trades off two conflicting effects of information.

The first is a psychological cost from the regret about past choices that are revealed

to be suboptimal by the information, whereas the second is the instrumental value

of information for making better-informed choices in the future. Our main axioms

reflect the agent’s desire to have fewer options before the arrival of information and

to have more options after the arrival of information. We also posit axioms that

connect the agent’s consumption choice with her information choice. We show that

all parameters can be uniquely identified from the choice behavior. We also provide

comparative statics on the agent’s information aversion attitude.
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1 Introduction

Information avoidance is the active avoidance of freely accessible information relevant to

decision-making. It is puzzling because standard economic analyses suggest that infor-

mation may help an individual make better decisions and can also be ignored at no cost.

Thus, absent of strategic considerations, information should never be harmful. Neverthe-

less, there exists overwhelming evidence that information avoidance is widespread.1

Some existing theories can rationalize information avoidance in certain specific con-

texts.2 However, few of them can directly account for empirical findings that information

avoidance is often connected with choices made in the past. Such connections have been

extensively documented in a longstanding literature in psychology.3 The key observation

from this literature is that after making a choice, people exhibit “selective exposure to

information” by seeking supportive information and avoiding contradictory information to

that choice.4 In this paper, we directly address these findings by developing a model that

formally links information avoidance to past choices.

How could an economic agent’s preference for avoiding information be driven by a

choice made in the past? One natural answer is through regret. Information could reveal

an agent’s past choice to be suboptimal and cause her to experience a sense of regret for

not having chosen a different alternative. We refer to this (psychological) effect as the

regret cost of information. In addition to the regret cost, our model will also incorporate

the instrumental value of information. This instrumental value is derived from the agent’s

gain from making better-informed choices in the future. In reality, decisions are often

made before all relevant information arrives, and it is common for information to reveal

suboptimal past choices and to facilitate future decision-making at the same time. For

example, a physical examination that helps to screen for potential health problems might

also lead to the discovery that an old lifestyle was unhealthy. Inquiries about employment

1Lerman et al. (1999), Oster, Shoulson, and Dorsey (2013) and Persoskie et al. (2014) are among

the large literature documenting individuals avoiding relevant medical information when they are at risk

of certain diseases or health conditions. There is also a rapidly growing literature studying investors’

aversion to financial information. Examples include Karlsson, Loewenstein, and Seppi (2009), Sicherman

et al. (2016) and Hilbert et al. (2022). For a survey on information avoidance that draws from multiple

disciplines, see Golman, Hagmann, and Loewenstein (2017).
2Among others, there are Caplin and Leahy (2001), Kőszegi (2003), Brunnermeier and Parker (2005),

Dillenberger (2010) and Bénabou and Tirole (2011).
3This literature dates back to Festinger (1957), which was later followed by Frey and Wicklund (1978),

Frey and Rosch (1984), Frey and Stahlberg (1986) and Jonas et al. (2001).
4Examples more directly related to consumer behavior include Ehrlich et al. (1957) and Brock and

Balloun (1967), which observed that consumers may have the tendency to avoid information about products

they have considered but did not buy or information about risks of products they have purchased.
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opportunities from different industries for a new job might reveal to a worker that better

early-career choices could have been made. This novel tradeoff between the regret cost of

information and the instrumental value of information is at the core of our model. Our

model can thus generate both information avoidance and information-seeking behavior,

depending on which one of the two effects is dominant in specific decision situations.

To capture this tradeoff between the regret cost and instrumental value of information,

we build a model of decision making under uncertainty that involves choices in three

periods. Choices made before the arrival of information open up the possibility of regret,

and choices that can be made after the arrival of information are sources for its instrumental

value. The uncertainty is captured by a set of objective states of the world and information

generally represents what the agent expects to learn about the state of the world during

the course of her decision process.

Specifically, we consider an agent whose final choice can be modeled as an (Anscombe-

Aumann) act, which is a function that specifies an outcome in each possible state of the

world. In period 3 (the final period), the agent chooses an act from a menu (a set of acts)

F after the arrival of information. The information is beneficial for this final choice since

the agent’s choice of act from F can be conditioned on what the information reveals. The

menu F , however, was selected by the agent from a set of menus F in period 2 before

the information arrives. Thus, the information could reveal that another menu G that was

forgone from F is actually superior to the chosen menu F . More precisely, if the information

reveals that G contains an act g that has higher value than all acts in F , then the agent

would regret having chosen F over G. Finally, the agent in our model makes an initial

choice in period 1 between different sets of menus, having in mind the subsequent choices

of a menu and an act. Therefore, the first dimension of the choice domain in our model

corresponds to sets of menus of acts. This modelling approach reflects a common decision

procedure in reality in which the agent narrows down her set of options over time before

making a final choice. Although it seems to be complicated, it is actually a simplification

of standard dynamic decision problems.5

There is a second dimension of the choice domain in our model corresponding to in-

formation. We interpret it as that the agent has some control over the information that

would appear in her three-period decision problem. We formalize this idea by modeling

information as an information structure. Each information structure consists of a set of

signal realizations and a collection of conditional probability distributions describing the

5For example, in Kreps and Porteus (1978), an agent’s choice in each period could determine her

consumption in that period and a set of options she can choose from in the next period. Our model

simplifies this kind of problem by restricting the consumption to only take place in the final period.

2



likelihood for each signal realization to obtain in different states.6 An agent anticipates

that some information will arrive (i.e., some signal realization will be observed) during

her decision process and different signal realizations might carry different values to her.

Moreover, she can evaluate an information structure from an ex-ante perspective by av-

eraging the values of all possible signal realizations. This second dimension of the choice

domain allows us to interpret the agent’s behavior as avoiding information, if she picks a

less informative information structure, in the sense of the Blackwell order (Blackwell, 1951,

1953), when a more informative one is available.

In sum, we investigate preferences over pairs consisting of a set of menus and an in-

formation structure. We show that by simply observing the agent’s preference over these

pairs, we can determine whether her choices can be modeled as if she trades off the regret

cost and the instrumental value of the information. Our main result is a representation

theorem that features what we refer to as an informational tradeoff (IT) representation.

As a building block for the axiomatic characterization of the IT representation, we also

consider a subjective informational tradeoff (SIT) representation in which the information

structure is a parameter instead of a choice variable. We show that such a representation

can be characterized from an agent’s preference over sets of menus alone. Moreover, the

information structure (as an unobservable parameter) can be elicited from this preference.

This characterization is of interest on its own for two reasons. First, conceptually, the

dual roles of information in our model do not depend on whether or not the agent has any

control over its content. In other words, the agent might still recognize the regret cost

and instrumental value of an information structure even if it is exogenously given. Second,

from a more pragmatic point of view, the economic modeler may not always be able to

observe the information structure anticipated by the agent (even if it is indeed chosen by

the agent). It would thus be valuable to be able to elicit the information structure from

the agent’s consumption behavior.

We now describe the main axioms for our representations.

We have two main axioms for the SIT representation. The first axiom reflects the

agent’s desire to limit her options for her period-1 choice, since she might experience regret

from comparing the menu she has chosen with the counterfactual outcomes represented

by the other menus she didn’t choose. Formally, suppose F and G are two menus and

{F} ≿ {G}. That is, the agent prefers a singleton set containing only menu F to a

singleton set containing only menu G. We assume this implies that the agent would

(weakly) prefer to choose F over G whenever both F and G are contained in the same set

of menus. Our justification for this assumption is from our interpretation that the agent’s

6This is the (statistical) experiment studied in Blackwell (1951, 1953) and has become a common way

to model information.
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menu choice from a set of menus is made before any information could arrive. Therefore,

the ex-ante comparison between F and G should not depend on whether other menus are

present and should be in line with the ranking of the singleton sets {F} and {G}. However,
the agent also takes into account the value of each menu after the arrival of the information

when evaluating sets of menus. More specifically, adding menu G to a set of menus F that

already contains menu F will always make it (weakly) worse, since G will never be chosen

over F from this set of menus but could contain acts that turns out to be better after some

signal realization and contribute to the agent’s regret. Summarizing the discussion above,

the axiom states that if {F} ≿ {G} and F ∈ F, then F ≿ F∪ {G}. We refer to this axiom

directly as Ex-Ante Regret.7

The second main axiom for the SIT representation reflects the agent’s preference for a

set of menus that allows her to decide later, all else equal. Formally, suppose F is a set of

menus and F,G are two menus. The axiom states that F∪{F ∪G} ≿ F∪{F,G}. That is,
if two sets of menus correspond to the same set of acts that can be ultimately chosen, then

the agent would prefer the set that allows her to postpone her decision on which menu to

commit to, because doing so would allow her more options to choose from after the arrival

of information. We refer to this axiom as Interim Preference for Flexibility.8

Other axioms for the characterization of the SIT representation are Weak Order, Con-

tinuity, Independence, Finiteness and Domination. These axioms are more standard in the

setting of preference over menus and are simply adapted to our setting of preference over

sets of menus of acts.

Our axiomatic exercise to characterize the IT representation builds on the axiomatic

characterization of the SIT representation. In other words, all axioms used for establishing

a SIT representation will also be utilized for the IT representation. Note, however, that

these axioms only discipline the agent’s choices over sets of menus for some exogenously

given information structure. We posit additional axioms that link the agent’s consumption

choice to her information choice.

7Readers familiar with the literature on regret might already notice the similarity of this axiom and

the main axiom (dominance) of Sarver (2008). Despite the similarity, the axioms are imposed on different

choice domains. Our axiom can be viewed as an adaption from the framework with menus of lotteries to

the framework with sets of menus of acts.
8Takeoka (2006) posits an axiom similar to ours in a choice domain with menus of menus of lotteries.

In the same domain as Takeoka (2006), Kopylov and Noor (2018) and Stovall (2018) each considers an

axiom opposite to our axiom, where the agent either prefers to decide earlier or has interim preference for

commitment.
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1.1 Preview of Results

We now describe the functional form identified from our representation theorems.

Let Ω be a finite set of states of the world. The agent’s uncertainty about Ω is captured

by a prior belief π ∈ ∆(Ω).9 An information structure is a mapping σ : Ω → ∆(S) where

S is a finite set of signal realizations. Let X be a finite set of outcomes. An (Anscombe-

Aumann) act is a mapping from Ω to ∆(X), specifying a lottery over X as the outcome

of this act in each state of the world. Let f denote an act. Let F denote a menu of acts

and let F denote a set of such menus. The informational tradeoff (IT) representation for a

pair (F, σ) is
W (F, σ) := max

F∈F

∑
s∈S

σ(s)
[
U(F, µσ

s )−R(F,F, µσ
s )
]

(1)

where σ(s) is the ex-ante probability that signal realization s is generated while µσ
s is

the Bayesian posterior if realization s is observed.10 The function U(F, µσ
s ) captures the

material utility of a menu F under posterior µσ
s with

U(F, µσ
s ) := max

f∈F

∑
ω∈Ω

µσ
s (ω)u

(
f(ω)

)
(2)

where u : ∆(X) → R is an affine function over lotteries that captures the agent’s taste

over outcomes. Equation (2) describes that the value of a menu F is the expected value

of the best act in it and this contributes to the instrumental value of information.

Finally, R(F,F, µσ
s ) captures the agent’s regret for having chosen menu F from a set of

menus F at posterior µσ
s . Formally,

R(F,F, µσ
s ) := K

[
max
G∈F

U(G, µσ
s )− U(F, µσ

s )

]
. (3)

That is, the agent’s regret is proportional to the difference of the material utility for the

menu she has chosen and the highest material utility she could have obtained if she had

chosen another menu from F. The intensity of regret is capture by the scalar K ≥ 0.

In summary, equation (1) specifies that the agent evaluates the value of the pair (F, σ)
by the highest expected net value that can be obtained by committing to some menu F in

F. The expected net value of a menu F is the weighted average of its net value after each

possible signal realization from the information structure σ. This net value is obtained

by subtracting the term capturing the regret as defined in equation (3) from the material

value of the menu as defined in (2), reflecting the tradeoff between the regret cost and the

instrumental value of information.

9For any finite set Y , we use ∆(Y ) to denote the probability simplex over Y .
10Formally, σ(s) =

∑
ω∈Ω π(ω)σ(s | ω). For any signal realization s with σ(s) > 0, the posterior

µσ
s ∈ ∆(Ω) is µσ

s (ω) =
π(ω)σ(s|ω)

σ(s) , and we set the posterior µσ
s to be uniform if σ(s) = 0.
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In a subjective information tradeoff (SIT) representation, a set of menus of acts F is

evaluated by

V (F) = max
F∈F

∑
s∈S

σ(s)
[
U(F, µσ

s )−R(F,F, µσ
s )
]

(4)

where all terms σ(s), µσ
s , U(F, µσ

s ) and R(F,F, µσ
s ) are defined in the same way as in the

IT representation. Therefore, equations (1) and (4) describe the same functional form.

However, the important difference is that the information structure σ is a choice variable

in equation (1) while it is a parameter in equation (4). We show that we can elicit all

parameters in the SIT representation from the preferences over sets of menus, including

the information structure.11

We now give a numerical example as an illustration for these representations and that

our model can generate both information-avoiding and information-seeking behavior.

Example 1. Consider a student choosing between several colleges. College 1 offers an

economics major (Econ) and a computer science major (CS) but does not allow any student

to double major. College 2 offers only the economics major and College 3 offers both majors

and allow students to double major. Suppose that upon graduation, students majoring in

economics can choose between two jobs, banking (b) and consulting (c), while a computer

science major has only one option to work as a software engineer (e). We thus interpret

each major as a menu of jobs, that is, Econ = {b, c} and CS = {e}. And we further

interpret each college as a set of majors,12 that is,

F1 = {Econ, CS} =
{
{b, c}, {e}

}
F2 = {Econ} =

{
{b, c}

}
F3 = {Econ, CS, Econ ∪ CS} =

{
{b, c}, {e}, {b, c, e}

}
Suppose the student’s choices are based on the career prospect associated with each job, but

that there is some uncertainty about these careers. Further suppose that this uncertainty

can be represented by a binary state space Ω = {ω1, ω2} that captures the relevant labor

market conditions. Suppose the student’s prior belief is such that the two states are equally

likely, that is, π(ω1) = π(ω2) = 0.5. Suppose the state-dependent utility derived from the

career prospect for each job can be summarized by

11Dillenberger, Lleras, Sadowski, and Takeoka (2014) are the first to study the identification of an agent’s

subjective information from preferences over menus. We use a technique similar to theirs as part of our

identification strategy.
12Note that we interpret the option of double major to simply mean the student can choose among all

three jobs upon graduation. On a different note, F4 = {Econ ∪CS} represents a college that only offers a

double major in economics and computer science, which is different from both F1 and F3.

6



u b c e

ω1 110 100 130

ω2 60 90 50

Finally, supposeK ≥ 0 and that the student learns the true state upon graduation. That is,

after her major choice but before her job choice, she observes a signal realization generated

from a fully revealing information structure described by

σ s1 s2

ω1 1 0

ω2 0 1

That is, signal realization si will be generated with probability 1 contingent on the state

of the world being ωi. Therefore, observing si helps the student to be sure that ωi is the

state of the world.

We first illustrate the SIT representation by computing the value of each college to the

student, taking this information structure as fixed. If the student chooses the economics

major from F1, then banking (b) provides the best career prospect if s1 is observed and

consulting (c) is the better choice if s2 is observed. However, she would feel a sense of

regret for majoring in economics if she observes s1, because she could have u(e(ω1)) = 130

if she had majored in CS instead of maxf∈Econ u(f(ω1)) = 110. Indeed, the material utility

(U) and corresponding disutility from regret (R) for choosing each major from F1 can be

summarized by

U Econ CS

s1 110 130

s2 90 50

R Econ CS

s1 20K 0

s2 0 40K

Since the prior is π(ω1) = π(ω2) = 0.5, each signal realization is generated with probability

0.5. Therefore, the expected net value for the Econ major in F1 is 0.5 × (110 − 20K) +

0.5× (90− 0) = 100− 10K. For CS, it is 0.5× (130− 0) + 0.5× (50− 40K) = 90− 20K.

Since K ≥ 0, the student would choose Econ over CS in F1 and the value of College 1 is

thus V (F1) = 100− 10K.

For College 2, there is only one major, so there is no regret associated with choosing

the wrong major.13 The value for F2 can be calculated as V (F2) = 0.5× (110− 0) + 0.5×
(90 − 0) = 100. Note that as long as K > 0, that is, as long as the agent is susceptible

13It is fair to ask about the possibility for the student to regret her college choice. We believe it is a

natural first step for modeling regret by focusing on the regret generated from more recent decisions.
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to feeling regret, then she would choose College 2 over College 1, since by offering the CS

major that would never be chosen over the Econ major, College 1 only opens the student

up for disutility from regret. This is exactly the motivation for our axiom on Ex-Ante

Regret.

Lastly, through similar calculations, we can see that the student would choose to double

major in College 3 by choosing “Econ ∪ CS”, and the value for the college is V (F3) =

0.5 × (130 − 0) + 0.5 × (90 − 0) = 110. This value is higher than both values of College

1 and College 2, as doing a double major allows the student to best use the information

about the state of the world, which also allows her to avoid feeling regret. This is exactly

the motivation for our axiom on Interim Preference for Flexibility.

We next illustrate the IT representation and show that an agent represented by the

IT representation may avoid information in some scenarios but seek information in other

scenarios. In our example, the student might want to learn less about the true state of the

world because of the anticipated regret. Formally, suppose the statistical experiment can

be parameterized by its precision θ, that is, the information about the state of the world

can be represented by

σθ s1 s2

ω1 θ 1− θ

ω2 1− θ θ

where θ ∈ [0.5, 1]. That is, the information is noisy in the sense that even if si is observed,

the student cannot be sure if ωi is the true state. But si is still indicative about state ωi

since the Bayesian posterior µi after observing si is µi(ωi) = θ ≥ 0.5. Suppose the student

has chosen College 1 but can control the precision of the information by controlling θ. Our

previous calculation shows that W (F1, σ1) = 100−10K. Similar calculations establish that

W (F1, σ0.5) = 95. Therefore, as long as K > 0.5, the student would prefer a completely

noisy information structure, θ = 0.5, to a fully informative information structure, θ = 1.

As depicted in Figure 1, the optimal precision could depend on the regret intensity K.

More precisely, when K = 0.4 (the blue curve), the student strictly prefers the highest

precision (θ = 1) than any other precision. When K = 0.8 (the red curve), sticking with

the completely noisy information structure (θ = 0) is optimal.

Note both curves are first flat (for θ ∈ [1/2, 4/7]), then decreasing (for θ ∈ [4/7, 3/4])

and then increasing (for θ ∈ [3/4, 1]). In the flat region, the consulting job (c) will have

the best expected payoff after either signal realization s1 or s2. The agent thus anticipates

no regret by choosing the Econ major. In this region, the value of the college does not

depend on the precision of the information structure because it always equals to the ex-
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Figure 1: Value of College 1, W (F1, σθ), as a function of θ

ante expected payoff of the consulting job. In the intermediate region (θ ∈ [4/7, 3/4]),

the information is precise enough for the agent to regret choosing the Econ major but

not precise enough for her to choose the banking job (b) after observing signal realization

s1. Therefore, the information carries a positive regret cost but zero instrumental value

and the increase in its precision only reduces the value of the college. In the final region

(θ ∈ [3/4, 1]), the information is precise enough for the agent to choose banking (b) after

observing s1. The information thus carries a positive instrumental value and the net value

of the information starts to increase with its precision.

The rest of the paper is organized as follows. In Section 2, we set up the model and

formally describe our primitives. Section 3 contains our analysis and results regarding

the subjective informational tradeoff representation, with the axioms in Section 3.1, the

representation theorem in Section 3.2, and the uniqueness result in Section 3.3. In Section

4, we characterize the informational tradeoff representation by considering the larger choice

domain where the agent’s information choice is also observable. Additional axioms and

the representation theorem are presented in Section 4.1. Section 5 concludes the paper by

discussing some related literature and two extensions.

9



2 The Model

2.1 Information Structures

Let Ω be a finite set of states with |Ω| ≥ 2. An information structure is a Blackwell

experiment with finitely many signal realizations. Formally, an information structure is a

pair (S, σ) where S is a finite set of signal realizations and σ is a mapping from Ω to ∆(S).

Write σ(s | ω) to denote the probability that signal realization s is generated contingent

on the state being ω. Different information structures could have different sets of signal

realizations. But for convenience, we simply write σ instead of (S, σ). Let I denote the

set of all information structures.

2.2 Acts, Menus and Directions

Let X be a finite set of prizes with |X| ≥ 2 and ∆(X) is the set of lotteries over X.14

An (Anscombe-Aumann) act is a mapping f : Ω → ∆(X). Let F be the set of all

acts, endowed with the Euclidean metric d. A menu is a nonempty compact subset of

F , typically denoted by F,G,H. Let M be the set of all menus. Endow M with the

Hausdorff metric dh.
15 M is compact.16 A direction is a nonempty compact subset of M,

typically denoted by F,G,H. A direction is effectively a set of menus. Let D be the set of

all directions. We endow D with the Hausdorff metric dH .
17 D is also compact.

The set F is equipped with the standard mixture operation. If f, g ∈ F and α ∈ [0, 1],

then αf + (1 − α)g is an act defined by
(
αf + (1 − α)g

)
(ω) := αf(ω) + (1 − α)g(ω).

For any F,G ∈ M and α ∈ [0, 1], define the convex combination of these two menus by

αF+(1−α)G := {αf+(1−α)g | f ∈ F and g ∈ G}. Similarly for any directions F,G ∈ D
and α ∈ [0, 1], their convex combination is defined as

αF+ (1− α)G := {αF + (1− α)G | F ∈ F and G ∈ G}.
14Equip ∆(X) with the usual mixture operation and endow ∆(X) with the Euclidean metric.
15This metric is defined by

dh(F,G) := max

{
max
f∈F

min
g∈G

d(f, g),max
f∈G

min
g∈F

d(f, g)

}
.

16See, for example, Aliprantis and Border (2006, Theorem 3.85).
17This is the Hausdorff metric based on dh, that is, dH is defined by

dH(F,G) := max

{
max
F∈F

min
G∈G

dh(F,G),max
F∈G

min
G∈F

dh(F,G)

}
.
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2.3 Primitive

The primitive of our model is a binary relation on D×I, representing the agent’s preference
over pairs consisting of a direction and an information structure. We have in mind an agent

facing a three-period decision problem. In period 1, the agent jointly chooses a direction

F and an information structure σ.18 The agent chooses a menu F from F in period 2,

anticipating the information to arrive after this choice. A signal realization s ∈ S is then

generated according to σ and observed by the agent. In period 3, the agent updates

her belief and chooses an act f from F . We do not explicitly model the agent’s choices

in periods 2 and 3, leaving them as part of the interpretation of the agent’s period-1

preference. The timeline is summarized in Figure 2.19

t = 1

direction

choice

F

t = 2

menu choice

from direction

F ∈ F

information choice

σ : Ω → ∆(S)

s ∈ S observed

belief updated

regret feeling

t = 3

act choice

from menu

f ∈ F

payoff received

f(ω)

Figure 2: Timeline

We start our analysis by restricting attention to a subdomain. Specifically, we consider a

binary relation ≿ on D representing the agent’s preference over directions. In this restricted

domain, the modeler does not observe the agent’s information choice and has to elicit the

information structure anticipated by the agent through her preference over directions. The

timeline for choices in this subdomain is identical to the timeline described in Figure 2. The

only difference in interpretation is that the information structure is now an unobservable

parameter instead of an observable choice variable. Therefore, we sometimes refer to this

as the subjective version of our model. The analysis and results for the subjective version

of the model are in Section 3. Further building on this analysis and results, the model with

the larger choice domain is studied in Section 4.

18Our model makes no restriction on the order of the direction choice and the information choice. Either

choice can be made first, depending on the decision scenario.
19In some applications, it might be more realistic for the information choice to be made after the menu

choice. We show that this can be accommodated in a simple extension of our model in Section 5.2.
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3 Subjective Informational Tradeoff Representation

We first give the formal definition of a subjective informational tradeoff representation

based on the discussion in the Introduction.

Definition 1: A subjective informational tradeoff (SIT) representation is a tuple

(π, u,K, σ) that consists of a probability measure π on Ω, a non-constant affine function

u : ∆(X) → R, a constant K ≥ 0, and an information structure20 σ : Ω → ∆(S) such that

≿ can be represented by the function V : D → R defined by

V (F) = max
F∈F

∑
s∈S

σ(s)
[
U(F, µσ

s )−R(F,F, µσ
s )
]

(5)

where σ(s) =
∑

ω∈Ω π(ω)σ(s | ω) is the ex-ante probability of signal realization s, and

• µσ
s is the agent’s posterior belief after observing s, with

µσ
s (ω) =


π(ω)σ(s|ω)

σ(s)
if σ(s) > 0

1
|Ω| if σ(s) = 0

• U(F, µσ
s ) is the highest possible expected utility under belief µσ

s that can be obtained

by choosing some act in menu F . That is,

U(F, µσ
s ) = max

f∈F

∑
ω∈Ω

µσ
s (ω)u

(
f(ω)

)
. (6)

• R(F,F, µσ
s ) is the regret for having chosen F from F after observing s, that is,

R(F,F, µσ
s ) = K

[
max
G∈F

U(G, µσ
s )− U(F, µσ

s )

]
, (7)

where K ≥ 0 represents the agent’s regret intensity.

The interpretation for the SIT representation is just as in the Introduction. When

evaluating a direction, the agent anticipates that the information will not arrive until after

she makes her menu choice. That is, she will select a menu before observing any signal

realization generated from the information structure. On one hand, she can always (weakly)

gain from the information by conditioning her choice of act on the signal realizations as

captured by equation (6) and this constitutes the information value of information. On the

other hand, she could experience regret after some signal realizations if her choice of menu

20We write σ instead of (S, σ) to denote information structures for ease of exposition. As we have

mentioned before, we allow different information structures to have different sets of signal realizations.
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is revealed to be inferior as captured by equation (7). The regret associated with each

signal realization is proportional to the gap between the expected value of the best menu

in F and the expected value of the menu she has chosen. The agent’s ex-ante value of the

direction under the anticipated information is therefore based on the difference between

her expectation of the expected value of the chosen menu and her expectation of the regret.

An useful equivalent expression of the SIT representation can be obtained by combining

equations (5)-(7):

V (F) = max
F∈F

[
(1 +K)

∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

]
−K

∑
s∈S

max
G∈F

max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω))
(8)

Intuitively, the agent in our model chooses a menu from the direction to maximize her

expectation of utility minus regret. However, given the information structure, the menu

that maximizes her expected utility also minimizes the expectation of her regret. That is,

the set of maximizers of equation (5) within a given direction F will not depend on the

value of K. Therefore, although the regret may cause the agent in our model to prefer

smaller directions (in terms of set inclusion), it does not distort her choice of menu from

a direction since the same set of menus will be the maximizers for the positive term in

equation (8) no matter how high the regret intensity level is.

3.1 Axioms

We impose eight axioms on the binary relation ≿. The first three axioms are standard in

the setting of preferences over menus of lotteries and are simply adapted to our setting of

preferences over directions (menus of menus) of acts.

Axiom 1—Weak Order: ≿ is complete and transitive.

Axiom 2—Continuity: For any F, the sets {G : F ≿ G}, {G : G ≿ F} are closed.

Axiom 3—Independence: For any F,G,H and any α ∈ (0, 1),

F ≿ G ⇐⇒ αF+ (1− α)H ≿ αG+ (1− α)H.

We refer the reader to Dekel, Lipman, and Rustichini (2001), Dekel, Lipman, Rustichini,

and Sarver (2007) and Kopylov (2009) for a discussion of these axioms.

To state the next axiom, we need to introduce the notion of a “critical” subset.
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Definition 2: We say G is critical for F if G ⊆ F and H ∼ F for any H satisfying

G ⊆ H ⊆ F. We say G is critical for F in F if G ⊆ F ∈ F and (F \ {F}) ∪ {H} ∼ F for

any menu H satisfying G ⊆ H ⊆ F.

The name “critical” is intuitive: If G is critical for F, then menus in F but outside G
are all irrelevant for the agent’s evaluation of F. The intuition is similar for a menu G

being critical for another menu F in a direction F.

Axiom 4—Finiteness: There exists a natural number N such that the followings hold:

• For every F, there exists G with |G| < N such that G is critical for F .

• For every F and every F ∈ F, there exists G with |G| < N such that G is critical for

F in F.

In essence, Axiom 4 states that only a finite number of menus within any direction

matter for evaluating that direction and only a finite number of acts within any menu

matter for the evaluation of the direction containing it. Effectively, this restriction reflects

the fact the agent is only willing to entertain a finite number of beliefs over Ω as possible

posteriors after the information arrival and this helps to guarantee that the anticipated

information structure has finitely many signal realizations. Axiom 4 is adapted from the

Finiteness axiom from Stovall (2018), who studies preferences over menus of menus of

lotteries. We refer the reader to Stovall (2018) for a more detailed discussion of this axiom

and its connection with the finiteness axioms stated in Dekel, Lipman, and Rustichini

(2009) and Kopylov (2009).

The following axiom allows for the possibility of regret:

Axiom 5—Ex-Ante Regret: If {F} ≿ {G} and F ∈ F, then F ≿ F ∪ {G}.

Axiom 5 is adapted from the Dominance axiom from Sarver (2008). He studies prefer-

ences over menus of lotteries to capture regret generated by an agent’s subjective uncer-

tainty about her taste over lotteries. We adapt his dominance axiom to our framework of

preferences over directions of acts.

Contrary to standard models, Axiom 5 allows for the possibility that F ≻ F∪{G}, that
is, the agent may strictly prefer not to add a menu G to a direction F. This reflects the

agent’s desire to limit the size of the direction in some situations. In addition, Axiom 5

specifies that the exact situations in which the agent might exhibit this desire are when the

added menu G will never be subsequently chosen from F ∪ {G} because an ex-ante better

menu F is already contained in F. Intuitively, if G is not chosen in period 2, then it does

not benefit the agent to add G to F. But it can harm the agent if some act contained in

G turns out to be better after some signal realizations from the anticipated information.
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The next axiom reflects the fact that information can still benefit the agent because

she values flexibility for her intermediate choice.

Axiom 6—Interim Preference for Flexibility: For any direction F and menus F,G,

F ∪ {F ∪G} ≿ F ∪ {F,G}.

Note that the two directions in the comparison share the same set of acts that can

be ultimately chosen. They only differ in how much flexibility can be retained after the

arrival of information. Specifically, the agent can choose F ∪G from the direction on the

left hand side and choose acts from both F and G after observing any signal realization.

But she has to decide between choosing F or G from the direction on the right hand side

before the information could arrive. If she selects F , then she has to let go acts that are

in G but not in F . Those acts could turn out to be better after certain signal realizations,

potentially contributing to both lower payoff in the future and higher regret about the

past. Same goes for choosing G. Other than the part about regret, this is the standard

argument for the preference for flexibility as coined in Kreps (1979). This axiom differs

from the standard argument for the preference for flexibility, however, since our agent not

necessarily prefers a direction that contains larger sets.21

Stovall (2018) considers a related axiom in the setting of preferences over menus of

menus of lotteries. His axiom, called “interim preference for commitment,” states the

opposite of our Axiom 6. That is, the agent prefers adding two menus separately to a set

of menus comparing to adding their union. In his model, interim preference for commitment

is used to capture the fact that the agent is subject to temptation in the intermediate stage.

Our next axiom is the standard nontriviality statement that the agent has strict pref-

erence over some pairs of outcomes.

Axiom 7—Nontriviality: There exist lotteries ℓ, ℓ′ ∈ ∆(X) with ℓ ≻ ℓ′.22

To state the last axiom, we need to introduce the notion of domination.

Definition 3:

• Say that an act f dominates another act g if f(ω) ≿ g(ω) for all ω ∈ Ω.

• Say that a menu F dominates another menu G if for any g ∈ G, there exists f ∈ F

such that f dominates g.

• Say that a direction F dominates another direction G if for any G ∈ G, there exists

F ∈ F such that F dominates G.
21That is, we do not impose any axiom like “ F ∪ {F} ≿ F ∪ {G} whenever G ⊆ F .”
22We follow a common practice of abusing notation by using ℓ to also denote the constant act that yields

lottery ℓ in every state. For simplicity, we also write ℓ ≻ ℓ′ for {{ℓ}} ≻ {{ℓ′}}.
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By definition, domination is built on state-by-state comparisons between acts. Therefore, if

f dominates g, then the agent will never choose g over f under any belief over Ω. Similarly,

if a menu F dominates another menu G, then F will have higher material value than G

under any belief. Therefore, there will never be any regret about not choosing G from a

direction also containing F . These observations motivate the next axiom.

Axiom 8—Domination:

1. If f dominates g, then f ≿ g and {{f, g}} ∼ {{f}}.

2. If F dominates G, then F ∼ F ∪G.

The first half of part 1 reflects a sense of monotonicity of the agent’s preference. If f

is better than g in every state, then f itself should be preferred to g. The second half of

part 1 states that adding a dominated act to a menu does not change her attitude toward

the menu, because a dominated act contributes to neither the material value of the menu

nor the regret. Similarly for part 2, if F dominates G, then any menu G ∈ G is dominated

by some menu F ∈ F. Therefore, adding this collection of dominated menus to F will not

change the agent’s choice of menu from F. It will not change the agent’s anticipated regret,

either. So the agent is indifferent between F and F ∪G.

3.2 Representation Theorem

Theorem 1: A binary relation ≿ over D has a subjective informational tradeoff repre-

sentation if and only if it satisfies Axioms 1-8.

The proof of Theorem 1 is contained in Appendix B. The necessity of the axioms is

relatively easy to check.

There are two steps to prove the sufficiency of Axioms 1-8 for the SIT representation.

We first prove a representation theorem (Theorem 6) for a preference over menus of menus

of lotteries that is closely related. For convenience, we refer to a menu of menus of lotteries

as a direction of lotteries. The setup for this related choice domain and the results are

contained in Appendix A. This representation theorem features what we refer to as a

“partial regret” representation. It can be viewed as an extended version of the regret

representation in Sarver (2008) with three time periods. The agent chooses a direction of

lotteries in period 1 and then selects a menu from this direction in period 2. Both choices

are made before her subjective uncertainty about her taste over lotteries are resolved. She

learns about her taste after the menu choice but before the lottery choice in period 3. This

could make her regret her menu choice, but she can also choose the best lottery from this
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menu according to the revealed taste. Different from Sarver (2008), the agent still has

some flexibility after the uncertainty about her taste for lotteries is resolved.

The second step is to establish a connection between the respective choice domains

for the SIT representation and the partial regret representation. To do so, we build on a

technique used in Dillenberger, Lleras, Sadowski, and Takeoka (2014, henceforth DLST)

which involves a sequence of geometric arguments that connects a preference over menus

of acts to a preference over menus of lotteries. Our proof involves connecting a preference

over directions of acts to a preference over directions of lotteries.

We now apply the SIT representation to two specific types of directions.

Definition 4: For any menu F , let D(F ) := {{f} | f ∈ F}. We say a direction F is

an early-commitment direction if F = D(F ) for some F .

The operation D(F ) is one natural way to make a menu F into a direction: We first

collect each element f ∈ F into a singleton menu and then collect all these singleton

menus into a direction. In our model, this correspond to the case where the agent has

to commit to a final choice (i.e., an act) before she observes any signal realization from

the information structure. In other words, the agent is choosing between acts based on

her prior. Facing early-commitment directions, information carries zero instrumental value

and only contributes to an agent’s regret. This is captured by our representation, since

when restricting to early-commitment directions,

V
(
D(F )

)
= max

f∈F

[
(1 +K)

∑
ω∈Ω

π(ω)u(f(ω))

]
−K

∑
s∈S

max
g∈F

∑
ω

π(ω)σ(s | ω)u(g(ω)). (9)

This corresponds to a finite version of the regret representation characterized in Sarver

(2008) in the framework with acts. Sarver (2008) studies preferences over menus of lotteries

and the agent’s regret is from her uncertainty about future tastes for lotteries. Despite the

similarity in the way to model regret, his paper does not emphasize the mechanism for the

agent’s taste change. On the contrary, we focus on the interpretation that information is

the driving force for the agent’s change in how she evaluates acts.

We say that a direction F is a singleton direction if F = {F} for some menu F . This

corresponds to an alternative way of embedding the set of menus into the set of directions.

When restricting to singleton directions, the SIT representation reduces to

V
(
{F}

)
=
∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω)). (10)

That is, a singleton direction corresponds to the case where the agent can make all her

relevant decisions after observing a signal realization from the information structure, and

this corresponds to a finite version of the subjective learning representation characterized

in DLST.
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3.3 Uniqueness of the SIT Representation

Recall that a subjective informational tradeoff representation for ≿ has four parameters

(π, u,K, σ), where π is the prior over Ω, u is an affine function over outcomes, K is a

non-negative scalar and σ is an information structure.

Definition 5: A distribution over posteriors, denoted by ν, is a finitely-supported

probability measure on ∆(Ω). We say that ν is induced by a prior π and an information

structure σ : Ω → ∆(S) if ν satisfies that for any µ ∈ ∆(Ω),

ν(µ) =
∑
s∈S

1[µ = µσ
s ]σ(s),

where 1(·) is the indicator function, and σ(s) and µσ
s are the ex-ante probability of observing

s and Bayesian posterior after observing s, respectively.

Since the agent is Bayesian, the induced distribution over posteriors always averages

back to the prior, that is,
∑

µ∈supp(ν) ν(µ)µ(ω) = π(ω) for any ω ∈ Ω. We say an information

structure σ induces a degenerate distribution over posteriors if the induced distribution puts

weight 1 on the prior belief.

Note from equation (5) that if two information structures σ and σ′ induce the same

distribution over posteriors given a prior π, then the SIT representations with parameters

(π, u,K, σ) and (π, u,K, σ′) represent the same preference over D.

Theorem 2: Suppose both (π0, u0, K0, σ0) and (π, u,K, σ) represent ≿, then

• π0 = π.

• u0 = au+ b for some a > 0 and b ∈ R.

• σ0 and σ induce the same distribution over posteriors given the prior belief π.

• K0 = K if σ induces a nondegenerate distribution over posteriors. If σ induces a

degenerate distribution over posteriors, then K0, K ∈ [0,∞).

Proof. See Appendix C.1.

The identifications of the prior belief π and the taste u follow directly from the unique-

ness result of the standard subjective expected utility model studied in Anscombe and

Aumann (1963). One quick and intuitive way to understand our uniqueness result on the

information structure σ and the regret intensity K is through the uniqueness results from

Sarver (2008) and DLST.
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When restricting attention to early-commitment directions (i.e., F = D(F ) for some

menu F ), our representation reduces to a finite version of the regret representation in

Sarver (2008) in the context of acts. This is the representation described in equation (9).

Despite the difference in the primitive, we can think of applying Theorem 4 of Sarver

(2008) to jointly identify σ and K as long as σ does not induce a degenerate distribution

over posteriors.23 However, we run into a similar issue as in Sarver (2008) when we try to

separately identify σ and K using only the representation in equation (9). The issue is that

we might not always be able to distinguish between the following two agents. The first is

an agent who has a large intensity of regret but anticipates an information structure that

is not likely to update her belief away from the prior belief, and the second is an agent who

has a low level of regret intensity but anticipates an information structure that is more

likely to update her belief away from her prior. More precisely, (σ1, K) and (σ2, 2K) will

generate the same preference over directions according to equation (9) if σ2 is obtained

by halving the probability of each signal realization in σ1 in every state of the world and

adding an extra signal realization that is generated with probability 0.5 in every state.

We can overcome this issue and achieve separate identification of the information struc-

ture σ and the regret intensity K by taking advantage of our larger choice domain. Specifi-

cally, we turn to the singleton directions. When restricting attention to singleton directions

(i.e., F = {F} for some menu F ), our representation reduces to a finite version of the sub-

jective learning representation in DLST. This is the representation described in equation

(10). DLST show that the information structure (modeled as a distribution over posteri-

ors) can be uniquely identified. This helps us to separately identify σ and K, as long as σ

does not induce a degenerate distribution over posteriors.

We can make a sharper statement on the uniqueness of the information structure in the

SIT representation, provided that the identified prior belief π has full support. To make

the statement, we formally introduce the notions of garbling and Blackwell equivalence.

Definition 6: Let σ1 : Ω → ∆(S1) and σ2 : Ω → ∆(S2) be two information structures.

Say that σ2 is a garbling of σ1 if there exists ϕ : S1 → ∆(S2) such that

σ2(s2 | ω) =
∑
s1∈S1

ϕ(s2 | s1)σ1(s1 | ω)

for all s2 ∈ S2 and ω ∈ Ω.

In words, σ2 is a garbling of σ1 if σ2 can be obtained by adding some noise to the

information structure σ1. Blackwell’s theorem (Blackwell, 1951, 1953) establishes that σ2

23When it does, the agent anticipates zero regret from any direction because her evaluations for acts

before and after the arrival of information are exactly the same. In such a case, all regret intensity levels

will generate the same preference over directions.
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is a garbling of σ1 if and only if σ1 is more informative than σ2, where “σ1 being more

informative than σ2” means that every Bayesian expected utility maximizer will weakly

prefer σ1 to σ2 in every standard decision problem. And we say σ1 is Blackwell equivalent

to σ2 if σ1 is more informative than σ2 and σ2 is more informative than σ1.

Corollary. Suppose both (π0, u0, K0, σ0) and (π, u,K, σ) represent ≿. If π has full

support, then σ0 is Blackwell equivalent to σ.

That is, we can identify the information structure up to its equivalence class specified

by the Blackwell informativeness order when the identified prior has full support.

The notion of one information structure being more informative than another will also

be used to capture the meaning of information avoidance in our model.

4 Informational Tradeoff Representation

We now move on to formally establish the informational tradeoff representation. First, we

need to come back to the choice domain that involves both a choice of direction and a

choice of information structure. Let ≿ be a binary relation over D × I,24 where D is the

set of all directions and I is the set of all information structures.25 The interpretation for

this binary relation is the same as discussed in Section 2.3.

Definition 7: A binary relation ≿ over D × I has an informational tradeoff (IT)

representation if there exists a triple (π, u,K) that consists of a probability measure π on

Ω, a non-constant affine function u : ∆(X) → R, and a constant K ≥ 0 such that ≿ can

be represented by the function W : D × I → R defined by

W (F, σ) = max
F∈F

[
(1 +K)

∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

]
−K

∑
s∈S

max
G∈F

max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω))
(11)

Equation (11) is expressed in the same fashion as equation (8): There is no direct

reference to the material utility U of a menu or the regret cost R. But one can still see

24This is an abuse of notation as we also use ≿ to denote a binary relation over D. We will explicitly

specify the domain whenever we use ≿ from this point on.
25Jakobsen (2021) studies the axiomatic foundation for persuasion models using a related primitive. The

modeler in his model observes a sender’s preference over information structures indexed by menus of acts

and a receiver’s choice correspondence from menus indexed by signal realizations. Our papers are similar

in that both can be used to study preference over information, but our primitive is different in that the

modeler in our model observes the agent’s preferences over pairs of directions and information structures

instead of the conditional preferences along each single dimension of the choice domain.
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that the first term captures the instrumental value of information since the agent can

choose different acts after different signal realizations, and the second term corresponds to

the regret cost.

The IT representation allows richer interpretations of our model comparing to the SIT

representation. Fixing an information structure σ, the IT representation fully describes a

preference over directions as in the SIT representation. Fixing a direction F, we can now

examine the agent’s preference over information structures using the IT representation.

This enables us to capture the information avoidance behavior of an agent. More precisely,

we would say an agent avoids information if she exhibits a strict preference for a less

informative information structure over an more informative one. The IT representation

also allows the comparison of directions across different information structures.

To characterize the IT representation, we first connect a preference over D × I to a

collection of preferences over D indexed by the information structures.

Definition 8: Fix a binary relation ≿ over D×I and an information structure σ ∈ I,
the conditional preference ≿σ is the binary relation over D defined by

F ≿σ G if (F, σ) ≿ (G, σ). (12)

Through the conditional preferences, we can build on top of the axioms identified for

the SIT representation to characterize the IT representation. All our previous axioms

(Axioms 1-8) are imposed on a specific conditional preference and thus have no bite on the

agent’s choices between directions across different information structures. Our additional

axioms will put restrictions that link the agent’s direction choice and information choice.

4.1 Additional Axioms and Representation Theorem

Let ≿ be a binary relation over D × I, and let ≿σ be the conditional binary relation over

D induced by ≿ and σ. On top of Axioms 1-8, we impose five additional axioms on ≿ to

characterize the IT representation. The first one is the standard rationality requirement

for this preference over the larger choice domain.

Axiom 9—Weak Order: ≿ is complete and transitive.

Note that if a binary relation ≿ over D × I is complete and transitive, then each

conditional preference ≿σ must also be complete and transitive. Therefore, Axiom 9 can

be viewed as expanding Axiom 1.

The next axiom imposes an independence requirement on mixing directions with acts.

For convenience, we write αF+ (1− α)h for αF+ (1− α){{h}}.
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Axiom 10—Act Independence: For any (F, σ), (G, σ′), any act h and any α ∈ (0, 1),

(F, σ) ≿ (G, σ′) ⇐⇒ (αF+ (1− α)h, σ) ≿ (αG+ (1− α)h, σ′) (13)

Given the interpretation of our model, the agent’s preference over acts (as reflected

through the preference for directions like {{f}}) should not depend on the information

structure. This is because when the agent has only one act that she can choose, the infor-

mation can neither help her make better choices in the future nor cause her to regret her

choice in the past. Therefore, even though we never formally defined the convex combina-

tion of two pairs, we can interpret the pair (αF+(1−α)h, σ) as α(F, σ)⊕(1−α)(h, σ). This

could naturally be interpreted as that the agent has chosen σ as her information structure

but could either face F or a single act h. Then the motivation for Axiom 10 is the same as

the motivation for standard independence axioms.

To state the other axioms, some additional notions are needed. First, an information

structure σ ∈ I is null (or uninformative) if it always induces a degenerate distribution

over posteriors under any prior. It is uninformative in the sense that the agent’s posterior

belief always equals to the prior facing such an information structure. Let o denote a

specific null information structure defined by o : Ω → ∆({so}). That is, this information

structure has only one signal realization so and this signal realization is obtained with

probability one no matter what the state of the world is. Our next axiom disciplines the

agent’s behavior when the observed information is exactly o.

Axiom 11—Strategic Rationality when No Information (SRNI): For any menus F,G,

{F} ≿o {G} =⇒ {F ∪G} ∼o {F}.

When the agent has chosen the information structure o, there will be no regret. She

would evaluate any menu according to the expected value of its best alternative since her

choices will be made based on the prior belief. Axiom 11 reflects this behavior with the

standard strategic rationality statement: If F is preferred to G given o, then F must

contain an act that is better than every act in G. Therefore, adding the acts in G to F

should not change the agent’s attitude toward F .

Suppose ≿o has a SIT representation, we will show that Axiom 11 (SRNI) guarantees

that the information structure identified from ≿o agrees with o (i.e., they both induce a

degenerate distribution over posteriors). This result will give us an anchor to pin down

other information structures.

Any information structure that is Blackwell equivalent to o will always induce a degen-

erate distribution over posteriors, so o is not the only null information structure. However,

we only need to impose the SRNI axiom on the preference over directions conditional on o
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because the rest of our axioms will imply that Blackwell equivalent information structures

induce same conditional preferences over directions.

Let σ : Ω → ∆(S) be an information structure and F ∈ M be a menu. A plan is a

mapping γ : S → F , with the interpretation that γ(s) is the act chosen by the agent if she

observes signal realization s. Intuitively, a plan describes the agent’s commitment on how

to react to the information. For example, if F is a singleton with F = {f}, then there is

only one plan for any S. The plan involves choosing f after every possible signal realization,

because it is the only option. For another example, if F = {f, g} and S = {s1, s2}, then
the agent has four different plans. The first plan is to choose f after s1 and choose g after

s2 (we write fg in short). The other three are ff , gf and gg.

Let F S denote the set of all plans (for a fixed information structure and a menu). Given

an information structure σ : Ω → ∆(S) and a plan γ ∈ F S, the act induced by σ and γ,

denoted by γσ, is an act defined by

γσ(ω) :=
∑
s∈S

σ(s | ω)[γ(s)](ω). (14)

That is, γσ is obtained by reducing the “compound act” described by γ and σ to an act

by averaging over different signal realizations. To illustrate, consider again the example

where F = {f, g} and S = {s1, s2}. The information structure σ : Ω → ∆(S) together

with the plan fg describe the following compound act: Contingent on ω being the state

of the world, the agent will obtain f(ω) (when the signal realization is s1 and she chooses

f according to the plan fg) with probability σ(s1 | ω) and obtain g(ω) with probability

σ(s2 | ω). The induced act (fg)σ is thus obtained by taking the convex combination

σ(s1 | ω)f(ω) + σ(s2 | ω)g(ω) state by state, as summarized by equation (14).

Definition 9: Fix a menu F and some information structure σ, the menu induced by F

and σ is defined by

Fσ :=
{
γσ | γ ∈ F S

}
. (15)

That is, Fσ is obtained by collecting all the acts that can be induced by the information

structure σ and some plan γ ∈ F S.

Axiom 12—Reduction: For any menu F ∈ M and any information structure σ ∈ I,

({F}, σ) ∼ ({Fσ}, o).

In particular, for singleton menus like F = {f}, the set of plans F S is a singleton

containing only one plan (choosing act f after any signal realization). Therefore, the

induced menu is Fσ = {f} for any information structure σ. Axiom 12 thus implies that
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(f, σ) ∼ (f, o) for any act f and information structure σ.26 Together with the completeness

and transitivity of ≿, Axiom 12 implies that the agent has a stable preference over acts that

is independent of the information structures. This property of the agent’s behavior gives

us a common ground to align the conditional preferences indexed by different information

structures.

Recall that a early-commitment direction is a directionD(F ) = {{f} | f ∈ F}. Our last

axiom concerns with mixtures of early-commitment directions D(F ) and their correspond-

ing singleton directions {F}. As it turns out, their interactions have a clear implication

on the regret intensity of an agent.

Axiom 13—Balance: If ({F}, σ1) ≻ ({F}, o) and ({G}, σ2) ≻ ({G}, o), then for any

α ∈ (0, 1],(
αD(F ) + (1− α){F}, σ1

)
∼ ({F}, o) ⇐⇒

(
αD(G) + (1− α){G}, σ2

)
∼ ({G}, o).

Axiom 13 describes the existence of a balance point between the two specific types

of directions, the early-commitment directions and the singleton directions. The implicit

assumption behind this axiom is as follows. If the agent strictly prefers σ1 to o when

facing a singleton direction {F}, then the agent will strictly prefer o to σ1 when facing

the corresponding early-commitment direction D(F ). The mixture αD(F ) + (1 − α){F}
effectively describes a scenario where the agent needs to first choose an act from F , but

has uncertainty about whether she has to stick to this choice (corresponding to D(F )) or

she has the chance to re-optimize within F (corresponding to {F}). Axiom 13 implies

that when facing such an uncertainty, there is a weight α that precisely balances out the

expected regret generated from facing D(F ) and the expected benefit from facing {F}.
At this balance point, the agent is indifferent of this option and the option to face {F}
with no information at all. Moreover, Axiom 13 states that this balance point is the same

across all menus F and information structures σ as long as the agent strictly benefits from

σ compared to no information when facing {F}.
Axiom 13 implies the existence of a unique scalar α∗ ∈ (0, 1] such that(

α∗D(F ) + (1− α∗){F}, σ
)
∼ ({F}, o)

for all menu F ∈ M and information structure σ ∈ I. Such a unique balance point α∗

exists independent of the consumption choice F and the information choice σ because our

interpretation for the IT representation involves a single parameter that represents the

agent’s regret intensity in every decision situation.

26Similar to what we do in the previous section, we abuse notation a little by writing (f, σ) for the pair

({{f}}, σ).
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We now state our representation theorem for the IT representation.

Theorem 3: A binary relation ≿ over D×I has an informational tradeoff representation

if and only if the following conditions are both satisfied:

• ≿ satisfies Weak Order, Act Independence, SRNI, Reduction and Balance.

• ≿σ satisfies Axioms 2-8 for each σ ∈ I.

Proof. See Appendix C.5.

4.2 Proof Sketch for Theorem 3

In this section, we formally state the intermediate results corresponding to the steps hinted

in the previous section that help us to build the IT representation.

Definition 10: A binary relation ≿ over D × I has an aligned informational tradeoff

representation if there exists a tuple
(
π, u, (Kσ)σ∈I , (i

σ)σ∈I
)
that consists of a probability

measure π on Ω, a non-constant affine function u : ∆(X) → R, a collection of information

structures iσ : Ω → ∆(Sσ) and a collection of non-negative scalars Kσ such that ≿ can be

represented by the function W : D × I → R defined by

W (F, σ) = max
F∈F

[
(1 +Kσ)

∑
t∈Sσ

max
f∈F

∑
ω∈Ω

π(ω)iσ(t | ω)u(f(ω))

]
−Kσ

∑
t∈Sσ

max
G∈F

max
g∈G

∑
ω∈Ω

π(ω)iσ(t | ω)u(g(ω))
(16)

This is called the “aligned” IT representation because the collection of IT representa-

tions for each σ is aligned together by sharing the same prior belief π and the same taste

over outcomes u.

Axiom 14—Stable Preference over Acts: For any f, g and any σ, σ′,

(f, σ) ≿ (g, σ) ⇐⇒ (f, σ′) ≿ (g, σ′)

Axiom 14 is motivated by the role of information in the decision process. When there is

only one act that the agent can choose, any information is irrelevant for the decision since

the agent can neither benefit from the information nor be hurt from any regret caused by

the information.

Lemma 1: A binary relation ≿ over D × I has an aligned informational tradeoff

representation if and only if the following conditions are both satisfied:
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• ≿ satisfies Weak Order, Stable Preference over Acts and Act Independence.

• ≿σ satisfies Axioms 2-8 for each σ ∈ I.

Proof. See Appendix C.2.

That is, by imposing Weak Order, Stable Preference over Acts and Act Independence

on top of the axioms that ensure that each conditional preference ≿σ has a SIT represen-

tation, we guarantee the existence of a utility representation for a preference over the two

dimensional choice domain and at the same time make sure that the identified prior belief

and taste over outcomes are information-independent.

Lemma 2: If ≿o has a SIT representation (πo, uo, Ko, io), then ≿o satisfies Axiom 11 if

and only if io induces a degenerate distribution over posteriors.

Proof. See Appendix C.3.

That is, imposing Axiom 11 on an aligned IT representation guarantees that the con-

ditional preference ≿o labeled with o indeed corresponds to a situation where the agent is

anticipating a null information structure.

Definition 11: A binary relation ≿ over D×I has a regret-varying informational tradeoff

representation if there exists a tuple
(
π, u, (Kσ)σ∈I

)
that consists of a probability measure

π on Ω, a non-constant affine function u : ∆(X) → R and a collection of non-negative

scalars Kσ such that ≿ can be represented by the function W : D × I → R defined by

W (F, σ) = max
F∈F

[
(1 +Kσ)

∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

]
−Kσ

∑
s∈S

max
G∈F

max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω))
(17)

Comparing to an aligned IT representation, a regret-varying IT representation has the

feature that σ is no longer just a label, it is indeed the information structure anticipated

by the agent. Thus, if an agent’s preference can be represented by a regret-varying IT

representation, then we can model her behavior as if she is choosing between information

structures taking into account the tradeoff of the benefit for future choices and the regret

for past choices. It is not yet the IT representation because the regret intensity level could

still vary across different information structures, thus the name “regret-varying.”

Lemma 3: A binary relation ≿ over D × I has a regret-varying informational tradeoff

representation if and only the following conditions are both satisfied:
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• ≿ satisfies Weak Order, Act Independence, SRNI and Reduction;

• ≿σ satisfies Axioms 2-8 for each σ ∈ I.

Proof. See Appendix C.4.

Finally, adding Axiom 13 (Balance) on top of a regret-varying IT representation will

make sure that the parameters for regret intensity identified from all conditional preferences

over directions are the same.

4.3 Uniqueness of the IT Representation

As we have seen in Theorem 2, a threat to the identification of the regret intensity param-

eter is non-variation between the agent’s prior and posterior beliefs. Since the modeler can

observe the agent’s information choice in the IT representation, such non-variation could

only when the agent’s prior belief is degenerate.

Definition 12: We say that a preference ≿ over D × I has a trivial preference over

information if (F, σ) ∼ (F, σ′) for all F ∈ D and σ, σ′ ∈ I. The preference ≿ has a non-

trivial preference over information if it does not have a trivial preference over information.

That is, a trivial preference for information means the agent is indifferent between

any two information structures regardless of the direction she faces. The following lemma

fully characterize the connection between a degenerate prior and the agent’s preference for

information.

Lemma 4: Suppose ≿ has an informational tradeoff representation with parameters

(π, u,K). The prior belief π is degenerate if and only if ≿ has a trivial preference for

information.

Proof of Lemma 4. Only if. Suppose π is degenerate, that is, there exists exactly one

ω ∈ Ω such that π(ω) = 1. Then the only possible posterior is µσ
s = π for any information

structure σ and any signal realization s ∈ S. Hence W (F, σ) = W (F, σ′) for all F ∈ D and

σ, σ′ ∈ I, and ≿ has a trivial preference for information.

If. Suppose ≿ has a trivial preference for information, and suppose by contradiction

that π is non-degenerate. That is, there exists ω, ω′ ∈ Ω such that π(ω), π(ω′) > 0. Since

the taste function u is non-constant. It follows from a standard result that we can construct

two acts f, g such that the agent strictly prefers a fully informative experiment to a fully

uninformative experiment when facing {{f, g}}.
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Theorem 4: Suppose ≿ has an informational tradeoff representation (π, u,K) and ≿

has a non-trivial preference for information. Then (π′, u′, K ′) also represents ≿ if and only

if π′ = π, u′ = au+ b for some a > 0 and b ∈ R, and K ′ = K.

Proof of Theorem 4. The “if” direction is straightforward.

Only if. Suppose (π′, u′, K ′) also represents ≿. Then (π, u) and (π′, u′) agree on their

preference for acts. By the standard result from the Anscombe-Aumann framework, π′ = π

and u′ = au + b for some a > 0 and b ∈ R. Since ≿ has a non-trivial preference for

information, the prior π is non-degenerate (Lemma 4). Then the identification of the

regret intensity K follows from Theorem 2.

4.4 Comparing Information Aversion Attitudes

In this section, we focus our attention on preferences that have non-trivial preference

over information. Suppose ≿1, ≿2 each has an informational tradeoff representation with

parameters (π1, u1, K1) and (π2, u2, K2), respectively.

Definition 13: We say that ≿1 is more information averse than ≿2 if

(F, σ) ≿2 (F, σ′) =⇒ (F, σ) ≿1 (F, σ′) (18)

for any F ∈ D and any σ, σ′ ∈ I such that σ′ is Blackwell more informative than σ.

That is, agent 1 is more information averse than agent 2 if whenever agent 2 prefers to

avoid information, agent 1 will also prefer to avoid information.

We first focus our attention on comparing the information aversion attitude between

agents who agree on their preference over the acts.

Definition 14: We say that ≿1 and ≿2 agree on their preference over acts if (f, σ) ≿1

(g, σ) ⇐⇒ (f, σ) ≿2 (g, σ) for every f, g ∈ F and some σ ∈ I.

Note that the agent’s preference over acts is not affected by the information structure.

We now can state our comparative statics result.

Theorem 5: Suppose ≿1 and ≿2 agree on their preference for acts, then the following

are equivalent:

1. ≿1 is more information averse than ≿2.

2. K1 ≥ K2.

Proof. See Appendix C.6.
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5 Discussion and Extensions

We conclude by discussing some related literature and presenting two extensions of our

model. In Section 5.1, we discuss related work on regret and information avoidance. In

Section 5.2, we present an extension of our model to allow for the information choice to be

made after the menu choice. In Section 5.3, we present another extension of our model to

discuss the effects of allowing the agent to regret her choice of act.

5.1 Related Literature

Our paper contributes to the literature on regret and the literature on information avoid-

ance.

We are not the first to model regret as the difference between what the agent actually

gets from a certain choice and the counterfactual best outcome she could have got if

she made a different choice (earlier examples include Bell (1982), Loomes and Sugden

(1982, 1987) and Sugden (1993)). Sarver (2008) is the first to unveil the possibility of

identifying regret through preferences over menus. Through the investigation of preferences

over menus of lotteries, Sarver (2008) develops an axiomatic model in which an agent

anticipates regret from the resolution of her subjective uncertainty regarding her taste

over lotteries. His dominance axiom helps to differentiate regret from other motives for

desiring a smaller menu, like temptation. Our paper is similar in spirit to capture regret,

but we study preferences over a larger choice domain with a emphasis on the role of

information. This larger choice domain also helps us to overcome the identification issue

for the parameter of regret intensity in Sarver (2008). Buturak and Evren (2017) axiomatize

a utility representation similar to Sarver (2008) to explain choice overload where an agent

tends to stick more with some default option when there are more options to choose

from. Their key assumption is that regret might be asymmetric in the sense that sticking

with the default option does not generate regret even if it later turns out to be inferior

comparing to some other options, while deviating from the default option opens the agent

up to regret. In both papers, the only relevant choice by the agent is made before their

subjective uncertainty about their taste is resolved, so this resolution is not beneficial

for their future choices. Our model explicitly allows the co-existence of regret for past

choices and benefit for future choices. Indeed, this tradeoff between the regret cost of

information on past choices and the instrumental value of information through making

better-informed future choices is at the core of our analysis. Krähmer and Stone (2013)

apply a utility representation similar to the regret representation in Sarver (2008) to argue

that ambiguity aversion as captured in Ellsberg’s paradox could be explained as an aversion
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to anticipated regret, because drawing from an urn with an unknown composition of balls

opens the agent up to regret while drawing from an unambiguous urn does not generate any

regret. They touch upon the possibility of using regret to explain information avoidance

by interpreting ambiguity aversion as a version of information aversion. With a direct

focus on explicit information choice, our paper provides a systematic analysis of this issue.

Moreover, our axiomatic approach uncovers the behavioral foundations for regret-driven

information avoidance.

We are not the first to attempt to build a theoretical model that can account for infor-

mation avoidance either. Information avoidance generally has many different appearances

in different contexts, and some of these behaviors can be accounted for by existing theo-

ries.27 Caplin and Leahy (2001) introduce a psychological state into the standard expected

utility framework and build anticipatory feelings about the future (represented by a belief)

into the agent’s utility function. This framework, even though non-axiomatic, is very gen-

eral and allows the possibility for information avoidance driven by different anticipatory

feelings, and one of them is anxiety. Kőszegi (2003) utilizes a similar framework with a

focus on patient behavior and builds a model where patients avoid relevant medical in-

formation in order to avoid the anxiety from the anticipation of the possibility of a bad

outcome. Brunnermeier and Parker (2005) model economic agents who can optimally set

their own beliefs facing uncertainty, and such an agent might want to avoid information

that could break their unwarranted optimistic beliefs.28 Dillenberger (2010) builds an ax-

iomatic model that features a preference for one-shot over gradual resolution of uncertainty.

As a result, the agent in his model might behave as if she is averse to some information if

the information represents a partial resolution of uncertainty.

An important feature that distinguishes our paper from all these works is that we

develop a model to formally link information avoidance with past choices. As we have

argued in the Introduction, establishing this link is important because there is a great

amount of evidence that people are more likely to avoid information after they make a

relevant choice.

Two other relevant papers where past choices could influence preferences are Bénabou

and Tirole (2011) and Eyster, Li, and Ridout (2021). Bénabou and Tirole (2011) considers

a three-period model that generalizes Caplin and Leahy (2001). Their emphasis is that

beliefs are treated as assets by some economic agents because those beliefs are valuable in

building an agent’s identity. Such agents might dislike information that could contradict

27Golman, Hagmann, and Loewenstein (2017) also contains a survey of these theoretical models.
28Oster, Shoulson, and Dorsey (2013) uses this theory to reconcile their empirical findings about indi-

viduals at risk of having Huntington disease avoiding simple and cheap genetic tests designed to reveal

whether they have the disease until after symptoms start to show.
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the belief they have invested in building. Eyster, Li, and Ridout (2021) builds an axiomatic

model to study ex-post rationalization. They study agents who may distort their future

choices in order to justify past choices. They thus focus on the specific type of information

structure that fully reveals the state of the world after the agent’s initial choice. Our

paper is different from these two papers in that we build the preference for information

directly into the choice domain, which allows us to formally study the connection between

an agent’s consumption choice and information choice.

5.2 Choosing Information after Choosing a Menu

An important feature of the interpretation for the IT representation is that the agent

jointly chooses a pair of a direction and an information structure. In particular, as dis-

cussed in Section 2, the choice of information is made before the choice of menu from the

chosen direction. This feature may give the impression that our agent has to commit to

a specific information acquisition strategy long before she makes her subsequent choices

from a direction, which is somewhat troubling in some potential applications.

To illustrate, consider our Example 1 about a student’s choice regarding information

about different jobs. In our current interpretation for the IT representation, the student

needs to decide on the information structure (i.e., θ, the precision of the noisy signal) and

commit to it before she could decide her major. The example would be more convincing if

the student’s choice about information is made after her major choice.

In this section, we discuss a simple extension of our model that addresses this concern.

In this extension, we can interpret the representation as if the agent is choosing an infor-

mation structure after choosing a menu from the direction. Consider the agent choosing

a compact set of information structures, Σ, in period one. That is, Σ is a compact sub-

set of I. This set Σ should be interpreted as the agent’s partial commitment about her

future information acquisition strategies. Suppose the agent has a preference over pairs of

directions and sets of information structures that can be represented by29

max
σ∈Σ

W (F, σ) = max
σ∈Σ

max
F∈F

∑
s∈Sσ

σ(s)

[
max
f∈F

∑
ω∈Ω

µσ
s (ω)u

(
f(ω)

)
−R(F,F, µσ

s )

]
(19)

= max
F∈F

max
σ∈Σ

∑
s∈Sσ

σ(s)

[
max
f∈F

∑
ω∈Ω

µσ
s (ω)u

(
f(ω)

)
−R(F,F, µσ

s )

]
(20)

29We will not present an complete axiomatic treatment for this representation since we are only using

this for comparison purposes. But one relatively straightforward way to axiomatize this is to impose the

standard strategic rationality axiom on the conditional preference for sets of information structures in

addition to the other axioms posited in the main text.
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where σ(s) and µσ
s are defined as before, and

R(F,F, µσ
s ) = K

[
max
G∈F

max
g∈G

∑
ω∈Ω

µσ
s (ω)u

(
g(ω)

)
−max

f∈F

∑
ω∈Ω

µσ
s (ω)u

(
f(ω)

)]
.

The fact that we can exchange the order of the two maximum operators follows from our

agent being Bayesian and forward-looking. And this allows us to interpret this extended

model as if the agent chooses her information structure after the menu choice.

5.3 Regretting the Choice of Act

Another important property of the informational tradeoff representation is that the agent

only experiences regret once and the regret is only about her choice of menu. This property

seems to indicate that the agent in our model cannot regret her choice of act even if she

finds out about the true state of the world after she receives her actual payoff.30 Even

though this assumption seems to suggest an inconsistency in our modeling approach, it

helps us cleanly isolate the tradeoff of the conflicting effects of information from other

potential confounding factors.

In this section, we discuss another simple extension of our model to relax the assumption

that the agent cannot regret her choice of act. We’ll see that such a relaxation may not

result in a change of the agent’s preference for information. Therefore, the extended model

does not necessarily deliver a different prediction on an agent’s information avoidance

behavior even though it causes the model to be much more complicated and less intuitive.

We consider an agent who might also regret her choice of act in period 3. This regret

could arise because the information arrived before the act choice only partially resolves

the uncertainty about the state of the world. Recall that the agent’s choice of act is based

on a posterior belief, and this posterior belief is not degenerate in general. Therefore, it

might be that the agent observes the true state of the world after she receives her payoff,

and regret her choice of act if another act might be better given the realized state.31 To

model this, consider an agent who has a preference that can be represented by32

W1(F, σ) := max
F∈F

∑
s∈S

σ(s)
[
Ũ(F,F, µσ

s )−R(F,F, µσ
s )
]

(21)

30Another implicit assumption for the interpretation for the IT representation is that the agent does

not regret her direction choice. We believe this assumption may not be as problematic since it is a natural

first step to model regret in a way such that more recent decisions are more salient.
31Generally, the agent can back out some information about the state of the world by observing the payoff

she receives and the partition it induces on the state space Ω. Here we make the simplifying assumption

that the agent observes the true state of the world when she receives her payoff.
32Again, we will not present an axiomatic treatment for this representation since it is only for comparison

purposes.
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where σ(s) and µσ
s are defined as before. The regret term R(F,F, µσ

s ) is also defined the

same as before, that is,

R(F,F, µσ
s ) = K0

[
max
G∈F

max
g∈G

∑
ω∈Ω

µσ
s (ω)u

(
g(ω)

)
−max

f∈F

∑
ω∈Ω

µσ
s (ω)u

(
f(ω)

)]

where K0 ≥ 0 represents the regret intensity. However, the “material utility” of a menu F

under a posterior belief µσ
s , denoted by Ũ , is now also dependent on the direction F it is

chosen from. Formally,

Ũ(F,F, µσ
s ) := max

f∈F

∑
ω∈Ω

µσ
s (ω)

[
u
(
f(ω)

)
− R̃(f, F,F, ω)

]
(22)

where R̃(f, F,F, ω) is the regret about the act choice f if the state is revealed to be ω.

Formally,

R̃(f, F,F, ω) := K1

[
max
G∈F

max
g∈G

u
(
g(ω)

)
− u
(
f(ω)

)]
+K2

[
max
h∈F

u
(
h(ω)

)
− u
(
f(ω)

)]
(23)

where the first term reflects the agent’s regret toward the counterfactual outcome she could

get if she can re-optimize her choice of menu, while the second term reflects the agent’s

regret toward the counterfactual outcome she could get if she can only re-optimize her

choice of act from the chosen menu F . Parameters K1, K2 ≥ 0 represent the respective

regret intensities. Therefore, a representation W1 in the form of equation (21) has five

parameters, (π, u,K0, K1, K2).

We are interested in comparing two agents’ attitudes toward information. The first

one is an agent who can be represented by an IT representation W with parameters

(π, u,K), and the second one is an agent who can be represented by W1 with parame-

ters (π, u,K0, K1, K2). The following lemma states that under some regularity conditions

about the regret intensities, the possibility of experiencing about her act choice will not

change an agent’s preference for information given any direction.

Lemma 5: If representations W and W1 share the same parameters (π, u) and the regret

intensity parameters satisfy K = K0

1+K1
and K2 = 0, then

W (F, σ) ≥ W (F, σ′) ⇐⇒ W1(F, σ) ≥ W1(F, σ′)

for any direction F and information structures σ, σ′ ∈ I.

Proof. See Appendix C.7.
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Intuitively, if K2 = 0 and the agent’s regret about her act choice solely comes from

the counterfactual comparison with what she could have got from the entire direction

F, then this part of regret will only depend on her prior belief but not on her choice of

information. And the relative regret intensity levels need to satisfy K = K0/(1 + K1).

The result hinges on these parametric assumptions. That is, if the relative strength of

the regret is mismatched or if the agent’s regret about her act choice also comes from the

counterfactual comparison with what she could have got from the menu she has chosen,

then her preference over information could change. The assumption that K2 = 0 also

reflects the subtlety we must face when considering regret in a multiple stage setup: We

must be precise about what is the reference point (i.e., the counterfactual outcome) the

agent is considering for her comparison.

Another complication is about how anticipatory is the agent toward these regret feel-

ings. For example, in the representation defined in equation (21), we assume that the regret

term R(F,F, µσ
s ) is the same as in the baseline model. That is, we implicitly assume that

the agent does not take future regret into account when considering her current regret. It

might also be plausible to define the regret term differently by

R′(F,F, µσ
s ) := K ′

[
max
G∈F

Ũ(G,F, µσ
s )− Ũ(F,F, µσ

s )

]
where Ũ(F,F, µσ

s ) is defined as in equation (22). With this definition, the agent essentially

“regret about her future regret” in the sense that she is so forward-looking that she includes

her regret from the act choice in the future when evaluating the value of a menu chosen

from the direction. Incorporating this consideration would make the model even more

complicated. It would be an interesting avenue for future research to find a clean way to

incorporate regret into an infinite-horizon discrete time model.
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A The Framework with Lotteries

In this section of the Appendix, we present some preliminary results in the framework with

lotteries. These results will be used to prove results in the main text.

A.1 Lotteries

Let Z be a finite set of outcomes. Let ∆(Z) denote the set of lotteries over Z, with typical

elements p, q. Endow ∆(Z) with the standard Euclidean metric. A menu is a nonempty

compact subset of ∆(Z). Let M̂ denote the set of all menus, with typical elements A,B.

Endow M̂ with the Hausdorff metric. A direction is a nonempty compact subset of M̂.

Let D̂ denote the set of all directions, with typical elements A,B. Endow D̂ with the

Hausdorff metric.

Let V denote the set of normalized expected utilities over ∆(Z), that is,

V :=

{
v ∈ RZ |

∑
z∈Z

vz = 0

}
.

Let U denote the set of doubly normalized expected-utility functions on ∆(Z), that is,

U :=

{
u ∈ RZ :

∑
z∈Z

uz = 0,
∑
z∈Z

u2
z = 1

}
.

A.2 Redundancy of a Collection of Utilities

An important notion that will be repeatedly used in our proof is about the redundancy of

a collection of linear functions. Formally,

Definition 15: Let {U1, . . . , Um} be a collection of continuous linear functions from

M̂ to R. We say this collection is redundant if there exists Ui that is constant or if there

exists i ̸= j such that Uj = αUi + β for some α > 0 and β ∈ R. We say a collection is

non-redundant if it is not redundant.

Similarly, if {u1, . . . , un} is a collection of expected utility functions over ∆(Z), then

we say this collection is redundant if there exists ui that is constant or if there exists i ̸= j

such that uj = αui + β for some α > 0 and β ∈ R.
By convention, an empty collection is not redundant.

Using the notion of redundancy, we can prove the following lemma.

Lemma 6: Let {ui}i∈I be a collection of normalized expected utility functions over ∆(Z),

and let U : M̂ → R be defined by U(A) :=
∑

i∈I maxp∈A ui(p). Then, U(A) = 0 for all

A ∈ M̂ if and only if ui(p) = 0 for all i ∈ I and all p ∈ ∆(Z).
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Proof of Lemma 6. The “if” part is straightforward.

To prove the “only if” part, first let J ⊆ I be a maximal collection of non-redundant

subset of I, that is, for any i ∈ I \ J , ui is constant or there exists some j ∈ J such that

ui = αuj for some α > 0. It suffices to show that U(A) ≡ 0 implies J = ∅.
Suppose by contradiction that |J | = 1, then let J = {uj}, and by the definition of J ,

there exists L > 0 such that U(A) = Lmaxp∈A uj(p). And Luj(p) = U({p}) = 0 for all

p ∈ ∆(Z) implies uj(p) = 0, contradicting J being non-redundant. So |J | ≠ 1.

Suppose by contradiction that |J | ≥ 2, then {uj}j∈J is a non-redundant collection of

expected utilities, and by a standard result (e.g., Lemma A.1 of Kopylov (2009, JET)),

there exists a menu of lotteries A = {pj}j∈J such that pj is the unique maximizer of uj in

A. Then, fix any k ∈ J ,

U(A) =
∑
j∈J

Lj max
p∈A

uj(p) =
∑
j∈J

Ljuj(pj) >
∑
j∈J

Ljuj(pk) = U({pk}) = 0,

contradicting U(A) = 0. So |J | < 2.

A.3 The Partial Regret Representation

Our primitive is a binary relation ≿ over D̂ (the set of all menus of menus of lotteries).

Definition 16: A binary relation ≿ over D̂ has a partial regret (PR) representation if

there exists a finitely-supported probability measure µ over U and a scalar K ≥ 0 such

that ≿ is represented by the function V̂ : D̂ → R defined by

V̂ (A) = max
A∈A

∑
u∈supp(µ)

µ(u)

[
max
p∈A

u(p)−R(A,A, u)
]

(24)

where

R(A,A, u) := K

[
max
B∈A

max
p∈B

u(p)−max
p∈A

u(p)

]
. (25)

The interpretation for the PR representation is the same as discussed in the main text.

The agent has subjective uncertainty about her future tastes. This uncertainty resolves

after her committing to a menu from a direction but before her choosing a lottery to

consume from the menu. Given a taste, she can choose the best lottery from her menu of

choice but inevitably suffers from regret if her choice of menu is suboptimal.

A useful equivalent expression of the utility representation is

V̂ (A) = max
A∈A

(1 +K)
∑

u∈supp(µ)

µ(u)max
p∈A

u(p)

−K
∑

u∈supp(µ)

µ(u)max
B∈A

max
p∈B

u(p). (26)
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We first present the axioms that characterize the PR representation. These should look

familiar to the axioms presented in the main text. The proof for the representation theorem

and some other intermediate results are in the next section.

Axiom A.1—Weak Order: ≿ is complete and transitive.

Axiom A.2—Continuity: For any A, the sets {B : B ≿ A}, {B : A ≿ B} are closed.

Axiom A.3—Independence: If A ≻ B, then for any C and α ∈ (0, 1],

αA+ (1− α)C ≻ αB+ (1− α)C.

For the next axiom, we need to define the notion of a critical subset in the framework

with lotteries. The interpretation is very similar to that in the framework with acts.

Definition 17: Let A be a direction. Say that B is critical for A if B ⊆ A and B′ ∼ A

for all B′ satisfying B ⊆ B′ ⊆ A. Say that B is critical for A in A if B ⊆ A ∈ A and

(A \ {A}) ∪ {B′} ∼ A for all B′ satisfying B ⊆ B′ ⊆ A.

Axiom A.4—Finiteness: There exists a natural number N such that

4.1. For every A ∈ D, there exists B with |B| < N such that B is critical for A ;

4.2. For every A ∈ D and every A ∈ A, there exists B with |B| < N such that B is

critical for A in A.

Axiom A.5—Ex-Ante Regret: If {A} ≿ {B} and A ∈ A, then A ≿ A ∪ {B}.

Axiom A.6—Interim Preference for Flexibility: For any direction A and any menus A,B,

A ∪ {A ∪B} ≿ A ∪ {A,B}.

Axiom A.7—Inclusion: If B ⊆ A and A ∈ A, then A ∪ {B} ≿ A.

Axiom A.8—Nontriviality: There exists A and B such that B ⊆ A with A ≻ B.
Axioms A.1-A.5 corresponds to Axioms 1-5, respectively. The inclusion axiom (Axiom

A.7) corresponds to a weakened version of the domination axiom (Axiom 8), and the

nontriviality axiom (Axiom A.8) is stated slightly different than Axiom 7.

Theorem 6: A binary relation ≿ over D̂ has a partial regret representation if and only

if it satisfies Axioms A.1-A.8.
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A.4 Proof of Theorem 6

We start by establishing a nested DLR representation from Axioms A.1-A.4. DLR refers

to Dekel, Lipman, and Rustichini (2009) who establishes a finite version of Dekel, Lipman,

and Rustichini (2001) for representations with subjective state spaces.

Definition 18: A binary relation ≿ over D̂ has a nested DLR representation if ≿ can

be represented by

VDLR(A) =
∑
i∈I+

max
A∈A

Ui(A)−
∑
i∈I−

max
A∈A

Ui(A) (27)

where I+ is the index set for the positive states and I− is the index set for the negative

states and {Ui}i∈I+∪I− is a non-redundant collection of continuous linear functions from

M̂ to R. (It is without loss to assume that I+ ∩ I− = ∅. Let I := I+ ∪ I−.) Moreover, for

each i ∈ I, Ui : M̂ → R has a DLR representation with

Ui(A) =
∑
k∈Pi

max
p∈A

wik(p)−
∑
j∈Ni

max
p∈A

vij(p) (28)

where Pi is the index set for the positive substates for Ui and Ni is the index set of negative

substates for Ui (it is without loss to assume that Pi ∩Ni = ∅) and {wk}k∈Pi
∪ {vj}j∈Ni

is

a non-redundant collection of normalized expected utilities over ∆(Z).

Lemma 7: A binary relation ≿ over D̂ has a nested DLR representation if and only if

it satisfies Axioms A.1-A.4.

Proof. See the proof of Theorem 5 of Stovall (2018).

Given the nested DLR representation, we can start to fine-tune the states and substates

through the other axioms to get to the PR representation.

Axiom A.9—Strong Ex-Ante Regret: If for any B ∈ B, there exists A ∈ A such that

{A} ≿ {B}, then A ≿ A ∪ B.

As suggested by its name, Axiom A.9 is a strengthening of Axiom A.5. However,

together with Axioms A.1 and A.2, Axioms A.5 and A.9 are equivalent. This is summarized

in the following lemma.

Lemma 8: Suppose ≿ satisfies Axioms A.1 (Weak Order) and A.2 (Continuity), then it

satisfies Axiom A.5 if and only if it satisfies Axiom A.9.

Proof. It is straightforward to see that if ≿ satisfies Axiom A.9, then it satisfies Axiom

A.5. We want to show that the other direction goes through, that is, Axiom A.5 implies
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Axiom A.9. Suppose ≿ satisfies Axiom A.5, and suppose two directions of lotteries A and

B are such that for all B ∈ B, there exists A ∈ A such that {A} ≿ {B}.
First note that the set of all menus of lotteries, M̂, is compact when equipped with

the Hausdorff metric. Therefore, M̂ is separable. We can thus choose a countable dense

subset of B, say B∗ = {Bi | i = 1, 2, . . . }. Define a sequence of directions (Bn)n=1,2,...

by Bn = {B1, B2, . . . , Bn}. Then Bn ⊆ Bn+1 for all n and B∗ =
⋃∞

n=1 Bn. By a standard

result, (Bn)n=1,2,... converges to the closure of B∗, that is, Bn → B∗ = B as n goes to infinity.

Note that B1 ∈ B∗ ⊆ B, so there exists A1 ∈ A such that {A1} ≿ {B1} by assumption,

and Axiom A.5 implies that A ≿ A ∪ {B1}. Let A1 = A ∪ {B1} = A ∪ B1. Similarly,

B2 ∈ B∗ ⊆ B, so there exists A2 ∈ A such that {A2} ≿ {B2}, and Axiom A.5 implies that

A1 ≿ A1 ∪ {B2}. Let A2 = A1 ∪ {B2} = A ∪ B2. By transitivity, A ≿ A1 and A1 ≿ A2

imply that A ≿ A2 = A∪B2. We can repeat this argument for each n and by an induction

argument, A ≿ A ∪ Bn for all n. Therefore, A ∪ Bn is in the lower contour set of A for

all n, that is, A ∪ Bn ∈ {C ∈ D̂ | A ≿ C}. Since ≿ satisfies Axiom A.2 (Continuity), this

lower contour set is closed, A ≿ limn→∞ A ∪ Bn = A ∪ B.

With this equivalence established, we show the effect of imposing Axiom A.9 on a

nested DLR representation.

Lemma 9: A binary relation ≿ over D̂ satisfies Axioms A.1-A.4 and Axiom A.9 if and

only if the following two conditions hold:

1. ≿ has a nested DLR representation with at most one positive state, that is, |I+| ≤ 1

in equation (27); and

2. Let v̂(A) := VDLR({A}) =
∑

i∈I+ Ui(A) −
∑

i∈I− Ui(A). There exists a non-negative

scalar α ≥ 0 such that
∑

i∈I+ Ui(A) = αv̂(A) for all A ∈ M̂.

Proof of Lemma 9.

If. Condition 1 implies that ≿ has a nested DLR representation, so by Lemma 7, ≿ satisfies

Axioms A.1-A.4. We just need to check if Axiom A.9 is implied by conditions 1 and 2. If

|I+| = 0, that is, I+ = ∅, then there is no positive state. Thus, A ≿ A ∪ B for any two

directions A,B ∈ D̂. Axiom A.9 is satisfied.

If |I+| = 1, then there is exactly one positive state, and

VDLR(A) = max
A∈A

U0(A)−
∑
i∈I−

max
A∈A

Ui(A),

with {U0} ∪ {Ui}i∈I− being a non-redundant collection of continuous linear functions from

M̂ to R. Recall that v̂(A) := VDLR({A}) =
∑

i∈I+ Ui(A) −
∑

i∈I− Ui(A), and {A} ≿ {B}
if and only if v̂(A) ≥ v̂(B).
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Suppose for any B ∈ B, there exists A ∈ A such that v̂(A) ≥ v̂(B). Since U0 is

non-constant, condition 2 implies that α > 0, and

U0(A) = α

[
U0(A)−

∑
i∈I−

Ui(A)

]
︸ ︷︷ ︸

=v̂(A)=VDLR({A})

for all A ∈ M̂.

Therefore, condition 2 implies that for any B ∈ B, there exists A ∈ A such that U0(A) ≥
U0(B), which further indicates that maxA∈A∪B U0(A) = maxA∈A U0(A). Since A ∪ B ⊇ A,
maxA∈A∪B Ui(A) ≥ maxA∈A Ui(A) for any i ∈ I−. Thus, VDLR(A) ≥ VDLR(A ∪ B), and
A ≿ A ∪ B. Axiom A.9 is satisfied when |I+| = 1.

This completes the proof of the “if” part.

Only if. By Lemma 7, Axioms A.1-A.4 imply the existence of a nested DLR representation

for ≿ as in Definition 18. We want to show that if Axiom A.9 is also satisfied, then |I+| ≤ 1

and condition 2 is also satisfied.

If |I+| = 0, then I+ = ∅ and there is no positive state, condition 1 is satisfied. And we

can set α = 0 so that condition 2 is satisfied.

If |I+| > 0, then I+ ̸= ∅ and there is at least one positive state. It suffices to show that:

If Axiom A.9 is satisfied, then for any positive state i ∈ I+, there exists α > 0 such that

Ui(A) = αv̂(A). Suppose by contradiction that for some i∗ ∈ I+, Ui∗ does not represent

the same preference over M̂ as v̂. Consider three cases:

• Case 1: v̂ represents a trivial preference over M̂, that is, v̂(A) = 0 for all A ∈ M̂.

Then there is at least another state in I+ ∪ I− that is different from i∗ (otherwise

v̂(A) = Ui∗(A), contradiction). So there are at least two elements in {Uk}k∈I+∪I− .

Thus we can apply a standard result (e.g., Lemma A.1 of Kopylov, 2009) to conclude

that there exists a collection of menus A := {Ak}k∈I+∪I− such that Ak is the unique

maximizer of Uk in A for each k ∈ I+ ∪ I−, and |A| ≥ 2.

Let A1 := A \ {Ai∗} and B1 := {Ai∗}. Then A1 ̸= ∅ (since |A| ≥ 2) and for

any B ∈ B1, there exists A ∈ A1 such that {A} ≿ {B} (since v̂(A) = 0 =

v̂(B) for any A,B ∈ M̂). Moreover, maxA∈A1∪B1 Ui∗(A) > maxA∈A1 Ui∗(A) and

maxA∈A1∪B1 Uk(A) = maxA∈A1 Uk(A) for any k ̸= i∗. Therefore, VDLR(A1 ∪ B1) >

VDLR(A1), indicating A1 ∪ B1 ≻ A1, violating Axiom A.9.

• Case 2: {v̂} ∪ {Uk}k∈I+∪I− is non-redundant.

There are at least two elements (v̂ and Ui∗) in this collection, thus we can apply a

standard result (e.g., Lemma A.1 of Kopylov, 2009) to conclude that there exists a
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collection of menus A′ := {B} ∪ {Ak}k∈I+∪I− such that B is unique maximizer of v̂

in A and Ak is the unique maximizer of Uk in A for each k ∈ I+ ∪ I−.

Construct two directions by A′
1 := A′ \ {Ai∗} and B′

1 := {Ai∗}. Then A′
1 ̸= ∅

(since B ∈ A′
1) and A′

1 ≥ B′
1 (since B ∈ A′

1 and v̂(B) > v̂(Ai∗)). Moreover,

maxA∈A′
1∪B′

1
Ui∗(A) > maxA∈A′

1
Ui∗(A) and maxA∈A′

1∪B′
1
Uk(A) = maxA∈A′

1
Uk(A) for

any k ̸= i∗. Therefore, VDLR(A′
1 ∪ B′

1) > VDLR(A′
1), indicating A′

1 ∪ B′
1 ≻ A′

1, violat-

ing Axiom A.9.

• Case 3: There exists some j ∈ I+ ∪ I− such that j ̸= i∗ but v̂ represents the same

preference over M̂ as Uj. Then {v̂} ∪ {Uk}k∈I+∪I−\{j} is non-redundant. Then the

similar arguments as in Case 2 above will lead to a violation of Axiom A.9.

This completes the proof of the “only if” part.

We move on to further fine-tune the states and substates of the nested DLR represen-

tation. A weapon for that is the following lemma.

Lemma 10: Let {Ui}i∈I be a finite collection of continuous linear functions from M̂ to

R such that the collection is non-redundant, and each Ui : M̂ → R has a minimal finite

DLR representation, that is,

Ui(A) =
∑
k∈Pi

max
p∈A

wik(p)−
∑
j∈Ni

max
p∈A

vij(p)

where for each i ∈ I, {wik}k∈Pi
∪ {vij}j∈Ni

is a non-redundant collection of normalized

expected utilities on ∆(Z). Then there exists a collection of menus {Ai}i∈I (all in the

interior of ∆(Z)) such that:

1. Ui(Ai) > Ui(Aj) for any i ∈ I and any j ̸= i.

2. For any i ∈ I, any k ∈ Pi and any j ∈ Ni,∣∣∣∣argmax
p∈Ai

wik(p)

∣∣∣∣ = 1,

∣∣∣∣argmax
q∈Ai

vij(q)

∣∣∣∣ = 1,

and for each fixed i, all these unique maximizers are distinct from each other.

Proof. See the proof of Lemma 3 of Stovall (2018).

With Lemma 10 in hand, we can further fine-tune the substates in the nested DLR

representation.

The next lemma states that imposing the Interim Preference for Flexibility axiom is

equivalent to requiring there to be no negative substates in any positive state and at most

one positive substate in any negative state. Formally,

41



Lemma 11: Suppose ≿ has a nested DLR representation as in Definition 18, then ≿

satisfies Axiom A.6 (Interim Preference for Flexibility) if and only if |Ni| = 0 for all i ∈ I+

and |Pi| ≤ 1 for all i ∈ I−.

Proof. Suppose ≿ has a nested DLR representation as in Definition 18, moreover, |Ni| = 0

for any i ∈ I+ and |Pi| ≤ 1 for any i ∈ I−. We want to show that A∪{A∪B} ≿ A∪{A,B}
for any direction A and menus A,B.

For any positive state i ∈ I+, Ui(A∪B) ≥ max{Ui(A), Ui(B)} since |Ni| = 0. Therefore,

the positive terms in VDLR(A ∪ {A ∪ B}) is weakly larger than the positive terms in

VDLR(A ∪ {A,B}).
For any negative state i ∈ I−: If |Pi| = 0, then Ui(C) = −

∑
j∈Ni

maxp∈C vij(p), and

−Ui(A ∪B) ≥ max{−Ui(A),−Ui(B)}. If |Pi| = 1, then

Ui(C) = max
p∈C

wi0(p)−
∑
j∈Ni

max
p∈C

vij(p),

and since maxp∈A∪B wi0(p) = max{maxp∈Awi0(p),maxp∈B wi0(p)}, we can again conclude

that −Ui(A ∪ B) ≥ max{−Ui(A),−Ui(B)}. Therefore, the negative terms in VDLR(A ∪
{A ∪B}) is weakly larger than the negative terms in VDLR(A ∪ {A,B}).

This completes the proof for the “if” part.

Only if. Suppose ≿ has a nested DLR representation as in Definition 18, moreover, ≿

satisfies Axiom A.6 (Interim Preference for Flexibility). We want to show that |Ni| = 0

for all i ∈ I+ and |Pi| ≤ 1 for all i ∈ I−.

By assumption, ≿ can be represented by

VDLR(A) =
∑
i∈I+

max
A∈A

Ui(A)−
∑
i∈I−

max
A∈A

Ui(A)

where {Ui}i∈I+∪I− is a non-redundant collection of continuous linear functions from M̂ to

R. Let I := I+ ∪ I−. For each i ∈ I,

Ui(A) =
∑
k∈Pi

max
p∈A

wik(p)−
∑
j∈Ni

max
p∈A

vij(p),

where {wik}k∈Pi
∪ {vij}j∈Ni

is a non-redundant collection of normalized expected-utilities

on ∆(Z). Thus, all assumptions of Lemma 10 are satisfied. Therefore, there exists a

collection of menus {Ai}i∈I in the interior of ∆(Z) such that

1. Ui(Ai) > Ui(Aj) for any i, j ∈ I with j ̸= i.
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2. For any i ∈ I, any k ∈ Pi and any j ∈ Ni,∣∣∣∣argmax
p∈Ai

wik(p)

∣∣∣∣ = 1,

∣∣∣∣argmax
q∈Ai

vij(q)

∣∣∣∣ = 1,

and for each fixed i, all these unique maximizers are distinct from each other.

Let A = {Ai}i∈I .
We will first show that |Pi| ≤ 1 for all i ∈ I−, that is, there is at most one positive

sub-state in any negative state. We do this by proving its contrapositive.

Suppose by contradiction that |Pi∗| ≥ 2 for some i∗ ∈ I−, that is, Ui∗ has two or more

positive sub-states. Then we want to construct A,B such that

VDLR(A ∪ {A ∪B}) < VDLR(A ∪ {A,B}).

We want A,B and A ∪B to be all “closed” to Ai∗ so that for any i ∈ I with i ̸= i∗,

Ui(Ai) > Ui(Ai∗) ≈ max
{
Ui(A ∪B), Ui(A), Ui(B)

}
This will guarantee that the difference between VDLR(A∪{A∪B}) and VDLR(A∪{A,B})
is generated solely by the difference in Ui∗ . Since i∗ is a negative state, to get the desired

strict inequality, we want

max
C∈A∪{A∪B}

Ui∗(C) > max
C∈A∪{A,B}

Ui∗(C).

For ease of exposition, we will write U∗ for Ui∗ and A∗ for Ai∗ . Similarly, we write P∗

for Pi∗ (the index set of positive sub-states in i∗), N∗ for Ni∗ , w∗k for wi∗k for any k ∈ P∗

and v∗j for vi∗j for any j ∈ N∗. For a, b ∈ R, write a ∨ b to denote max{a, b}.
By construction, A∗ is the unique maximizer of U∗ in A, thus, it suffices to have

U∗(A∗) ∨ U∗(A ∪B) > U∗(A∗) ∨ U∗(A) ∨ U∗(B)

which will happen if we have U∗(A ∪ B) > U∗(A∗), U∗(A), U∗(B). With this goal in mind,

we start to construct A and B.

Define pk := argmaxp∈A∗ w∗k(p). Since |P∗| ≥ 2, we can pick k and k′ with k ̸= k′ from

P∗. For any ε > 0, define

Aε := A∗ ∪ {pk + εw∗k}, Bε := A∗ ∪ {pk′ + εw∗k′}.

Since w∗k is normalized and pk is in the interior of ∆(Z) by construction, by a standard

result, we can find some ε small enough so that pk + εw∗k is also in the interior of ∆(Z).

43



Note that for any ε > 0,

w∗k(pk + εw∗k) = w∗k(pk) + ε∥w∗k∥2 > w∗k(pk).

Therefore,

max
p∈Aε

w∗k(p) = w∗k(pk) ∨ w∗k(pk + εw∗k) = w∗k(pk) + ε∥w∗k∥2

max
p∈Bε

w∗k(p) = w∗k(pk) ∨
(
w∗k(pk′) + εw∗k(w∗k′)

)
By construction, w∗k(pk′) < w∗k(pk), so there exists ε1 > 0 such that

w∗k(pk′) + ε1w∗k(w∗k′) < w∗k(pk),

which further indicates that maxp∈Bε1 w∗k(p) = w∗k(pk). With similar arguments, we could

find some ε2 > 0 such that

max
p∈Bε2

w∗k′(p) > w∗k′(pk′) = max
p∈Aε2

w∗k′(p).

Let ε3 := min{ε1, ε2}, then

max
p∈Aε3

w∗k(p) > w∗k(pk) = max
p∈Bε3

w∗k(p)

max
p∈Aε3

w∗k′(p) = w∗k′(pk′) < max
p∈Bε3

w∗k′(p).

Note that

U∗(A
ε3 ∪Bε3) =

∑
k∈P∗

max
p∈Aε3∪Bε3

w∗k(p)−
∑
j∈N∗

max
p∈Aε3∪Bε3

v∗j(p)

U∗(A
ε3) =

∑
k∈P∗

max
p∈Aε3

w∗k(p)−
∑
j∈N∗

max
p∈Aε3

v∗j(p)

U∗(B
ε3) =

∑
k∈P∗

max
p∈Bε3

w∗k(p)−
∑
j∈N∗

max
p∈Bε3

v∗j(p)

For each j ∈ N∗,

max
p∈Aε3∪Bε3

v∗j(p) = max
p∈A1

v∗j(p) ∨ v∗j(pk + ε3w∗k) ∨ v∗j(pk′ + ε3w∗k′).

Since A∗ is finite and v∗j has a unique maximizer in A∗ that is not pk or pk′ (by Lemma*),

we have a small number εj > 0 with εj < ε3 such that

max
p∈Aεj∪Bεj

v∗j(p) = max
p∈Aεj

v∗j(p) = max
p∈Bεj

v∗j(p) = max
p∈A∗

v∗j(p).

44



Let ε := minj∈N∗ εj, then Aε and Bε will satisfy our desired condition:

U∗(A
ε ∪Bε) > U∗(A∗), U∗(A

ε), U∗(B
ε)

because: (i) they all have the same negative term, and (ii) Aε ∪ Bε ⊃ Aε, Bε ⊇ A∗ so

Aε∪Bε has a weakly larger positive term, but it must be strictly larger as well because Aε

contains a unique maximizer pk + εw∗k in sub-state k and Bε contains a unique maximizer

pk′ + εw∗k′ in sub-state k′.

Finally, we can further scale down ε to guarantee that for any i ∈ I with i ̸= i∗,

Ui(Ai) > Ui(A
ε ∪Bε), Ui(A

ε), Ui(B
ε)

because: (i) Ai is the unique maximizer of Ui in A and (ii) Aε ∪Bε, Aε and Bε can all be

made arbitrarily close to A∗.

We will then show that for any i ∈ I+, |Ni| = 0, that is, there is no negative sub-state

in any positive state. We do this by proving its contrapositive.

Suppose by contradiction that |Ni∗| ≥ 1 for some i∗ ∈ I+. Since |N∗| ≥ 1, we can fix

some j ∈ N∗. Let qj := argmaxp∈A∗ v∗j(p). For any ε > 0, define

Aε := A∗ and Bε = (A∗ \ {qj}) ∪ {qj − εv∗j}.

We can find ε small enough such that qj − εv∗j is in the interior of ∆(Z). For any such

ε, v∗j(qj − εv∗j) = v∗j(qj)− ε∥v∗j∥2 < v∗j(qj) = maxp∈A∗ v∗j(p). Moreover, we can make ε

small enough so that

v∗j(qj − εv∗j) = v∗j(qj)− ε∥v∗j∥2 > max
p∈A∗\{qj}

v∗j(p)

v∗j′(qj − εv∗j) = v∗j′(qj)− εv∗j′(v∗j) < max
p∈A∗

v∗j′(p), ∀j′ ∈ N∗ and j′ ̸= j

w∗k(qj − εv∗j) = w∗k(qj)− εw∗k(v∗j) < max
p∈A∗

w∗k(p), ∀k ∈ P∗

Fix such a ε, we will have

U∗(B
ε) > U∗(A

ε) = U∗(A∗) = U∗(A
ε ∪Bε).

We can further scale down ε so that Ui(Ai) > Ui(A
ε), Ui(B

ε) for any i ∈ I and i ̸= i∗.

Then VDLR(A ∪ {Aε, Bε}) > VDLR(A ∪ {Aε ∪Bε}), violating Axiom A.6.

This completes the proof of Lemma 11.

Lemma 12 states that imposing the Inclusion axiom is equivalent to requiring there to

be no negative substates in any negative state. Formally,

Lemma 12: Suppose ≿ has a nested DLR representation as in Definition 18, then ≿

satisfies Axiom A.7 (Inclusion) if and only if |Ni| = 0 for any i ∈ I−.

45



Proof. If. Suppose ≿ has a nested DLR representation as in Definition 18, moreover,

|Ni| = 0 for any i ∈ I−. We want to show that A ∪ {B} ≿ A for any direction A and any

menu B such that B ⊆ A for some A ∈ A.
Fix A,B with B ⊆ A. For any negative state i ∈ I−, Ui(A) ≥ Ui(B) since |Ni| = 0.

Since A ∈ A, we must have −maxC∈A Ui(C) = −maxC∈A∪{B} Ui(C). For any positive state

i ∈ I+, maxC∈A∪{B} Ui(C) ≥ maxC∈A Ui(C). Thus, VDLR(A ∪ {B}) ≥ VDLR(A).

Only if. Suppose ≿ has a nested DLR representation as in Definition 18, moreover, ≿

satisfies Axiom A.7 (Inclusion) is satisfied, we want to show that for any i ∈ I−, |Ni| = 0.

That is, there is no negative sub-state in any negative state. We do this by proving its

contrapositive.

Let A = {Ai}i∈I be constructed the same way as in the proof of Lemma 11. Suppose

by contradiction that |Ni∗| ≥ 1 for some i∗ ∈ I−. For ease of exposition, write U∗ for Ui∗ ,

A∗ for Ai∗ , P∗ for Pi∗ , N∗ for Ni∗ , w∗k for wi∗k for any k ∈ P∗, and v∗j for vi∗j for any

j ∈ N∗.

Since |N∗| ≥ 1, we can fix some j ∈ N∗. Let qj := argmaxp∈A∗ v∗j(p). For any ε > 0,

define

Aε := A∗ ∪ {qj − εv∗j} and Bε = (A∗ \ {qj}) ∪ {qj − εv∗j}.

We can find ε small enough such that qj − εv∗j is in the interior of ∆(Z). For any such

ε, v∗j(qj − εv∗j) = v∗j(qj)− ε∥v∗j∥2 < v∗j(qj) = maxp∈A∗ v∗j(p). Moreover, we can make ε

small enough so that

v∗j(qj − εv∗j) = v∗j(qj)− ε∥v∗j∥2 > max
p∈A∗\{qj}

v∗j(p)

v∗j′(qj − εv∗j) = v∗j′(qj)− εv∗j′(v∗j) < max
p∈A∗

v∗j′(p), ∀j′ ∈ N∗ and j′ ̸= j

w∗k(qj − εv∗j) = w∗k(qj)− εw∗k(v∗j) < max
p∈A∗

w∗k(p), ∀k ∈ P∗

Fix such a ε, we will have

U∗(B
ε) > U∗(A

ε) = U∗(A∗).

We can further scale down ε so that Ui(Ai) > Ui(A
ε), Ui(B

ε) for any i ∈ I and i ̸= i∗.

Then VDLR(A∪{Aε, Bε}) < VDLR(A∪{Aε}) (since i∗ is a negative state), which is a direct

violation of Inclusion.

Now we are ready to present the proof for Theorem 6.

Proof of Theorem 6.

If. Suppose ≿ has a FPR representation with parameters (µ,K), that is, ≿ can be repre-
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sented by

V̂ (A) = max
A∈A

(1 +K)
∑

u∈supp(µ)

µ(u)max
p∈A

u(p)

−K
∑

u∈supp(µ)

µ(u)max
A∈A

max
p∈A

u(p).

We want to show that Axioms A.1-A.8 are satisfied. It is straightforward to verify the

necessity of the axioms using Lemmas 7, 9, 11, 12.

Only if. Axioms A.1-A.4 delivers a nested DLR representation (Lemma 7). Axiom A.5

guarantees that there is at most one positive state (part 1 of Lemma 9). Axiom A.6

guarantees that there are no negative substates in any positive state and at most one

positive substate in any negative state (Lemma 11). Axiom A.7 guarantees that there are

no negetive substates in any negative state (Lemma 12). Thus, there can be at most one

positive state (which contains only positive substates) and there might be multiple negative

states (each of which contains at most one positive substate and no negative substates).

Therefore, Axioms A.1-A.7 imply that there exists two non-redundant collections of

normalized expected utilities over ∆(Z), {wk}k∈P and {vj}j∈N , such that ≿ can be repre-

sented by the function VS : D̂ → R defined by

VS(A) = max
A∈A

∑
k∈P

max
p∈A

wk(p)−
∑
j∈N

max
A∈A

max
p∈A

vj(p). (29)

For convenience, define

U0(A) :=
∑
k∈P

max
p∈A

wk(p) Uj(A) := max
p∈A

vj(p) for each j ∈ N

v̂(A) := VS({A}) =
∑
k∈P

max
p∈A

wk(p)−
∑
j∈N

max
p∈A

vj(p).

If ≿ can be represented by VS as defined in equation (29) and ≿ satisfies Axiom A.8,

then |P | ≥ 1 and U0 is non-constant. Otherwise there will be no positive state in the

representation and A ≿ B for any A ⊆ B, violating Axiom A.8.

Note that since {vj}j∈N is non-redundant, {Uj}j∈N must also be non-redundant. We

continue our proof by proving the following lemma.

Lemma 13: If ≿ can be represented by VS defined in equation (29) with |P | ≥ 1 and ≿

satisfies Axiom A.5, then there exists α > 0 such that U0 = αv.

Proof of Lemma 13. We discuss two possible cases.

Case 1: Suppose {U0} ∪ {Uj}j∈N is non-redundant. Then

VS(A) := max
A∈A

U0(A)−
∑
j∈N

max
A∈A

Uj(A)
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is a nested DLR representation with exactly one positive state. By part 2 of Lemma 9,

this implies that there exists α > 0 such that U0 = αv.

Case 2: Suppose {U0} ∪ {Uj}j∈N is redundant. By our previous results, {Uj}j∈N is not

redundant and U0 is non-constant. Therefore, there exists some β > 0 and exactly one

j ∈ N such that U0 = βUj. (N cannot be empty, otherwise U0 is the only function in the

collection and {U0} is not redundant.) It must be that β > 1, otherwise there will be no

positive state (U0 is absorbed by Uj) and Axiom A.8 will be violated.

U0 = βUj means that for any menu A,∑
k∈P

max
p∈A

wk(p) = βmax
p∈A

vj(p).

Now this can only happen when |P | = 1, otherwise the LHS will exhibit strict preference

for flexibility in some cases while the RHS will always exhibit strategic rationality. Let

P = {k}, then wk = βvj, and U0 = βmaxp∈A vj(p). Let U ′
0 := (β − 1)Uj, then {U ′

0} ∪
{Uj′}j′∈N, j′ ̸=j is non-redundant. Then we can apply Lemma 9 again to conclude that there

exists α > 0 such that U ′
0 = αv̂ where

v̂(A) := VS({A}) = U0(A)−
∑
j∈N

Uj(A) = U ′
0(A)−

∑
j′∈N, j′ ̸=j

Uj′(A).

Therefore,

U0 =
β

β − 1
U ′
0 =

β

β − 1
(αv̂).

With β > 1 and α > 0, we can set α′ := αβ
β−1

. Then α′ > 0 and U0 = α′v̂.

This completes the proof of Lemma 13.

We have just shown that if Axioms A.1-A.8 are satisfied, then there exists α > 0 such

that U0 = αv̂. That is,∑
k∈P

max
p∈A

wk(p) = α

[∑
k∈P

max
p∈A

wk(p)−
∑
j∈N

max
p∈A

vj(p)

]
which further indicates that∑

j∈N

max
p∈A

vj(p) =
α− 1

α

∑
k∈P

max
p∈A

wk(p). (30)

Claim: For equation (30) to hold, it must be that α ≥ 1.

Proof of the Claim. Suppose by contradiction that α < 1. Then (α − 1)/α < 0, and the

RHS of equation (30) will represent a preference that exhibits the opposite of preference for

flexibility, while the LHS of equation (30) represents a preference that exhibits preference

for flexibility, contradiction.
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Now if α = 1, then for any menu A,∑
j∈N

max
p∈A

vj(p) = 0.

By Lemma 6, this indicates that N = ∅. And

VS(A) = max
A∈A

∑
k∈P

max
p∈A

wk(p)

with |P | ≥ 1. We can then get a FPR representation by setting K = 0 and (doubly)

normalizing each wk.

If α > 1, then |N | ≥ 1, and for any menu A,

U0(A) =
∑
k∈P

max
p∈A

wk(p) =
α

α− 1

∑
j∈N

max
p∈A

vj(p),

which further indicates that

VS(A) = max
A∈A

[
α

α− 1

∑
j∈N

max
p∈A

vj(p)

]
−
∑
j∈N

max
A∈A

max
p∈A

vj(p).

Since α > 1, we can get a FPR representation by setting K = α − 1 > 0, (doubly)

normalizing each vj and scaling everything up by multiplicating K.

This completes the proof of Theorem 6.

A.5 Uniqueness of the PR representation

For the identification of the parameters µ and K, we build on the identification result of

Dekel et al. (2001) and the uniqueness results in Sarver (2008).

Let V̂ be a PPR representation for ≿ with parameters (µ,K).

Define v̂ : M̂ → R, for any menu A ∈ M̂, by

v̂(A) := V̂ ({A}) =
∑

u∈supp(µ)

µ(u)max
p∈A

u(p). (31)

That is, v̂ represents a preference over M̂ generated by ≿ restricting to singleton directions

(directions containing only one menu). This is a special case of the representation captured

in Dekel, Lipman, and Rustichini (2001) and Dekel, Lipman, Rustichini, and Sarver (2007)

with preference for flexibility. Therefore, we can apply their identification result to conclude

that the subjective belief over tastes, µ, is uniquely identified (since the expected utilities

are doubly normalized). Formally,

Lemma 14: Suppose both (µ,K) and (µ′, K ′) represent ≿, then µ′ = µ.
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Now that µ is identified, we move on to the identification of K. We follow a similar

chain of steps used to establishing the uniqueness results in Sarver (2008).

Define r̂ : D̂ → R, for any direction A ∈ D̂, by

r̂(A) := min
A∈A

∑
u∈supp(µ)

µ(u)R(A,A, u)

= min
A∈A

∑
u∈supp(µ)

µ(u)K

[
max
B∈A

max
q∈B

u(q)−max
p∈A

u(p)

]
.

(32)

The function r̂(A) represents the minimal expected regret that the agent can experience

when faced with direction A. Note that given a direction A, the menu A that maximizes v

also minimizes expected regret. Therefore, for any direction A ∈ D̂, the agent will choose

A ∈ A to maximize v(A), and

V̂ (A) = max
A∈A

v̂(A)− r̂(A). (33)

Theorem 7: Two PR representations (µ,K) and (µ′, K ′) represent the same preference

≿ if and only if v̂′ = v̂ and r̂′ = r̂.

Proof of Theorem 7. The “if” part is straightforward.

For the “only if” part, suppose (µ,K) and (µ′, K ′) represent the same preference, then

we can first apply the mixture space theorem to guarantee that there exists α > 0 such

that v̂′ = αv̂ and r̂′ = αr̂.

But by Lemma 14, µ′ = µ implies that v̂′ = v̂. Thus, α = 1, and r̂′ = r̂.

To proceed with the identification of K, we first rule out a less interesting case where

Axiom A.5 is trivially satisfied.

Lemma 15: Suppose ≿ has a PR representation with parameters (µ,K), then the

following are equivalent:

1. r̂(A) = 0 for all A ∈ D̂;

2. ≿ satisfies monotonicity. That is, if B ⊆ A, then A ≿ B.;

3. K = 0 or µ = δu for some u ∈ U (or both).

Proof of Lemma 15. We show that 1 ⇐⇒ 2 and 1 ⇐⇒ 3.

1 =⇒ 2: Suppose r̂(A) = 0 for all A ∈ D̂. If A ⊇ B, then V̂ (A) = maxA∈A v̂(A) ≥
maxB∈B v̂(B) = V̂ (B). Thus, A ≿ B.
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2 =⇒ 1: Suppose by contradiction that r̂(A) > 0 for some A ∈ D̂, we want to show

that ≿ will not satisfy monotonicity. Fix a direction A such that r̂(A) > 0, let A ∈
argmaxB∈A v̂(B), then {A} ⊆ A but {A} ≻ A since

V̂ ({A}) = v̂(A) > v̂(A)− r̂(A) = V̂ (A).

Taking the contrapositive completes the proof.

3 =⇒ 1: Straightforward.

1 =⇒ 3: Suppose by contradiction that K > 0 and |supp(µ)| ≥ 2, then there exists a

menu of lotteries A0 = {pu}u∈supp(µ) such that pu is the unique maximizer of u in A. Let

A := {{pu} : u ∈ supp(µ)}. Then

r̂(A) = min
A∈A

∑
u∈supp(µ)

µ(u)K

[
max
B∈A

max
q∈B

u(q)−max
p∈A

u(p)

]

= min
p∈A0

∑
u∈supp(µ)

µ(u)K

[
max
q∈A0

u(q)− u(p)

]
But for any pu ∈ A0, maxq∈A0 u

′(q) − u′(p) > 0 for any u′ ̸= u. So r̂(A) > 0. Taking the

contrapositive completes the proof.

We say ≿ has a nontrivial PR representation if there exist A and B such that B ⊆ A
but B ≻ A.

Theorem 8: Suppose ≿ has a nontrivial PR representation and ≿ has two PR repre-

sentations (µ,K) and (µ′, K ′), then µ′ = µ and K ′ = K.

Proof. µ′ = µ by Lemma 14, and by Theorem 7, v̂′ = v̂, r̂′ = r̂. Since ≿ has a nontrivial

FPR representation, K,K ′ > 0. Since µ′ = µ, it must be that r̂(A)/K = r̂′(A)/K ′ for all

A ∈ D̂. Thus, r̂(A) = r̂′(A) for all A implies that K ′ = K.

B Proof of Theorem 1

B.1 Necessity of Axioms 1-8

Suppose ≿ has a SIT representation with parameters (π, u,K, σ), we want to show that ≿

satisfies Axioms 1-8.

By assumption, ≿ can be represented by

V (F) = max
F∈F

[
(1 +K)

∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

]
−K

∑
s∈S

max
G∈F

max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω))
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It is without loss to assume that 0 /∈ S. For convenience, let

U0(F ) :=
∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω)) (34)

Us(F ) := max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω)) for each s ∈ S (35)

It can be easily verified that U0 and (Us)s∈S are continuous linear functions from M to R,
where M is the set of all menus of acts equppied with the Hausdorff metric. Therefore,

the binary relation ≿ can be represented by

V (F) = max
F∈F

(1 +K)U0(F )−
∑
s∈S

max
F∈F

K · Us(F ). (36)

This is a finite DLR type representation over a general convex space, which is studied in

Kopylov (2009).

Lemma 16: If ≿ has a SIT representation, then ≿ satisfies Axioms 1-3 (Weak Order,

Continuity and Independence).

Proof of Lemma 16. By the arguments above, equation (36) implies that ≿ has a finite

DLR type representation over a general domain as characterized in Kopylov (2009). There-

fore, ≿ satisfies Axioms 1 and 2 by applying Theorem 2.1 of Kopylov (2009).

Axiom 3, our independence axiom, is slightly stronger than the independence axiom

posited in Kopylov (2009). To be precise, we verify that ≿ satisfies Axiom 3 directly. Let

F,G,H be three directions and α ∈ (0, 1).

F ≿ G ⇐⇒ V (F) ≥ V (G)

⇐⇒ αV (F) + (1− α)V (H) ≥ αV (F) + (1− α)V (H)

⇐⇒ V
(
αF+ (1− α)H

)
≥ V

(
αG+ (1− α)H

)
⇐⇒ αF+ (1− α)H ≿ αG+ (1− α)H

where the third equivalence follows from the definition of the convex combination of two

directions and the fact that U0, (Us)s∈S are all linear functions satisfying

Us(αF + (1− α)G) = αUs(F ) + (1− α)Us(G)

for any menus F,G ∈ M and any scalar α ∈ [0, 1].

Lemma 17: If ≿ has a SIT representation, then ≿ satisfies Axioms 4 (Finiteness).
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Proof of Lemma 17. Recall that S is a finite set representing the possible signal realizations

from the anticipated information structure σ. Let N = |S|+ 2.

For any direction F such that |F| < N , the direction itself is a critical subset whose

cardinality is smaller than N . For any direction F such that |F| ≥ N (including the

countable and uncountable cases), let F0 ∈ argmaxF∈F U0(F ), and Fs ∈ argmaxF∈F Us(F )

for each s ∈ S. Then G := {F0} ∪ {Fs}s∈S is critical for F and |G| ≤ |S|+ 1 < N . For the

second part of Axiom 4, fix any direction F and menu F ∈ F. If |F | < N , then F itself

is critical for F in F. If F /∈ argmaxG∈F U0(G) and F /∈ argmaxG∈F Us(G) for any s ∈ S,

then this menu does not matter in the first place for the evaluation of F, so the empty set

∅ is critical for F in F. Lastly, if |F | ≥ N and F is a maximizer of some of U0 and (Us)s∈S,

we discuss two different cases:

• If F is a maximizer of U0, then let fs be a maximizer of
∑

ω∈Ω π(ω)σ(s | ω)u
(
f(ω)

)
for each s ∈ S, then G := {fs}s∈S is critical for F in F, and |G| ≤ |S| < N.

• If F is a maximizer of Us for some s ∈ S, let g be a maximizer of
∑

ω∈Ω π(ω)σ(s |
ω)u

(
f(ω)

)
, then G := {g} is critical for F in F, and |G| = 1 < N.

This completes the proof of Lemma 17.

Lemma 18: If ≿ has a SIT representation, then ≿ satisfies Axioms 5 (Ex-Ante Regret).

Proof of Lemma 18. Recall that the SIT representation can be written as

V (F) = max
F∈F

(1 +K)U0(F )−
∑
s∈S

max
F∈F

K · Us(F ) (37)

where

U0(F ) :=
∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

Us(F ) := max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω)) for each s ∈ S

Observe that U0(F ) = V ({F}) for any menu F ∈ M. Suppose {F} ≿ {G} and F ∈ F, we
want to show that F ≿ F ∪ {G}.

{F} ≿ {G} implies that U0(F ) ≥ U0(G). Together with F ∈ F, this implies

max
H∈F

(1 +K)U0(H) = max
H∈F∪{G}

(1 +K)U0(H).
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That is, V (F) and V (F∪{G}) have the same positive term in equation (37). On the other

hand, for any s ∈ S, we have

max
H∈F

K · Us(F ) ≤ max
H∈F∪{G}

K · Us(F ).

Therefore, V (F) ≥ V (F ∪ {G}), indicating F ≿ F ∪ {G}.

Lemma 19: If ≿ has a SIT representation, then ≿ satisfies Axioms 6 (Interim Preference

for Flexibility).

Proof of Lemma 19. We want to show that for any F and any F,G,

F ∪ {F ∪G} ≿ F ∪ {F,G}.

This is easier to see using the alternative expression for the IT representation:

V (F) = max
F∈F

[
(1 +K)

∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

]
−K

∑
s∈S

max
G∈F

max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω))
(38)

Note that the negative term can be equivalently written as

K
∑
s∈S

max
g∈M(F)

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω))

where M(F) = {f | f ∈ F for some F ∈ F} denotes the set of feasible acts as defined in

the main text. It is clear that M(F∪{F ∪G}) = M(F∪{F,G}). Therefore, V (F∪{F ∪G})
and V (F ∪ {F,G}) have the same negative term in equation (38).

On the other hand, V (F ∪ {F ∪G}) has a weakly larger positive term because∑
s∈S

max
f∈F∪G

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

≥ max

{∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω)),
∑
s∈S

max
f∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

}

Therefore, V (F ∪ {F ∪G}) ≥ V (F ∪ {F,G}), indicating F ∪ {F ∪G} ≿ F ∪ {F,G}.

Lemma 20: If ≿ has a SIT representation, then ≿ satisfies Axioms 7 and 8 (Nontriviality

and Domination).
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Proof of Lemma 20. For a lottery ℓ ∈ ∆(X) and its corresponding constant act,

V ({{ℓ}}) =
∑
ω∈Ω

π(ω)u(ℓ) = u(ℓ).

And Axiom 7 (Nontriviality) must be satisfied because we require u to be nonconstant.

For Axiom 8 (Domination), suppose f dominates g, then f(ω) ≿ g(ω) for any ω ∈ Ω,

which further implies that u(f(ω)) ≥ u(g(ω)) for any ω ∈ Ω. Therefore,

V ({{f}}) =
∑
ω∈Ω

π(ω)u(f(ω)) ≥
∑
ω∈Ω

π(ω)u(g(ω)) = V ({{g}})

indicating f ≿ g. Moreover, u(f(ω)) ≥ u(g(ω)) for any ω ∈ Ω implies that∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω)) ≥
∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω)) for any s ∈ S.

That is, g will never be chosen over f after any signal realization s. Therefore,

V ({{f, g}}) =
∑
ω∈Ω

π(ω)u(f(ω)) = V ({{f}})

indicating {{f, g}} ∼ {{f}}.
Similarly, if F dominates G, then maxF∈F U0(F ) = maxF∈F∪G U0(F ) and

max
F∈F

Us(F ) = max
F∈F∪G

Us(F ) for any s ∈ S.

Therefore, V (F) = V (F ∪G), indicating F ∼ F ∪G.

This completes the proof for the necessity of Axioms 1-8 for a SIT representation.

B.2 Sufficiency of Axioms 1-8

As we have mentioned in the main text, the proof of Axioms 1-8 being sufficient for a

SIT representation is more involved. Here we provide a roadmap before we dive into the

details. We have characterized the partial regret (PR) representation in Appendix A. The

PR representation looks very similar to the SIT representation, only with the caveat that

it is in the framework of menus of menus of lotteries. In this proof, we will connect Axioms

1-8 we have in the main text with Axioms A.1-A.8 in the lottery framework in Appendix

A through two translations. The first translation will be from the preference over menus

of menus of acts to menus of menus of “utility acts,” and the second translation will be

from the menus of menus of “utility acts” to menus of menus of lottery. Similar translation

techniques are used in Dillenberger, Lleras, Sadowski, and Takeoka (2014).
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Step 1: Translate the preference over directions to a preference over “utility

directions.”

Note that Axioms 1-3 imply their corresponding axioms (weak order, continuity and inde-

pendence) over acts (i.e., direction containing only one singleton menu, like {{f}}). Axioms

7 (Nontriviality) and part 1 of Axiom 8 (Domination) imply the nontriviality axiom and

the monotonicity axiom in the Anscombe-Aumann framework. Therefore, by result from

the Anscombe-Aumann framework (for a detailed treatment, see Kreps (2018)), Axioms

1-3, 7 and 8 imply that there exists a unique probability measure π̄ ∈ ∆(Ω) and a surjective

affine utility index u : ∆(X) → [0, 1] such that the preference ≿ restricting to acts can be

represented by

V ({{f}}) :=
∑
ω∈Ω

π̄(ω)u
(
f(ω)

)
.

Now for any act f ∈ F , the composite function u ◦ f : Ω → [0, 1] specifies the utility

associated with f in each state ω. We call this the utility act induced by f and also write

u(f) to denote the utility act induced by f .

Let Fu := u(F) = {u(f) | f ∈ F}, that is, Fu is the set of utility acts induced by AA

acts from F . Since u is surjective, Fu = [0, 1]|Ω|.

Endow Fu with the Euclidean metric. Let Mu be the set of all non-empty compact

subsets of Fu, with typical elements Fu, Gu. We call these utility menus. Endow Mu with

the Hausdorff metric. Let Du be the set of all non-empty compact subsets of Mu, with

typical elements Fu,Gu. We call these utility directions. Endow Du with the Hausdorff

metric.

Naturally, we would believe that ≿ as a binary relation over menus of menus of acts

should induce a binary relation ≿u over Du: If F ≿ G, then define Fu ≿u Gu where

Fu := u(F) = {u(F ) | F ∈ F} and similar for Gu. However, since u is generally not

injective, for this definition to make sense, we need to guarantee that u(F) = u(G) implies

F ∼ G.

Lemma 21: If ≿ satisfies Axioms 1-3, 7 and 8, then u(F) = u(G) implies F ∼ G.

Proof of Lemma 21. We say two AA acts f and g are indistinguishable if

{{f(ω)}} ∼ {{g(ω)}} for all ω ∈ Ω.

Note that f and g are indistinguishable if and only if u(f) = u(g). If this looks weird at

first sight, recall that u(f) and u(g) are not scalar values of a function but are utility acts,

that is, they are functions from Ω to [0, 1].

We say two menus F andG are indistinguishable if for any f ∈ F there exists g ∈ G that

is indistinguishable to f and for any g′ ∈ G there exists f ′ ∈ F that is indistinguishable
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to g′. For a menu F ∈ M, let u(F ) := {u(f) | f ∈ F}. Note that F and G are

indistinguishable if and only if u(F ) = u(G). (The only if part is easy. To see the if part,

note that if u(F ) = u(G), then for any f ∈ F there exists g ∈ G such that u(f) = u(g),

which makes f and g indistinguishable. Similar arguments work for the other half of the

arguments).

We say two directions F and G are indistinguishable if for any F ∈ F there exists

G ∈ G that is indistinguishable to F and for any G′ ∈ G there exists F ′ ∈ F that is

indistinguishable to G′. For a direction F ∈ D, let u(F) := {u(F ) | F ∈ F}. Then F and G
are indistinguishable if and only if u(F) = u(G).

If F and G are indistinguishable, then F dominates G and G dominates F, then by the

second part of Axiom 8 (Domination),

F ∼ F ∪G and G ∼ F ∪G.

Therefore, F ∼ G by transitivty.

We formally define a preference relation ≿u over Du by

Fu ≿u Gu if and only if F ≿ G where F ∈ u−1(Fu) and G ∈ u−1(Gu). (39)

This is a valid definition by the result of Lemma 21. We then show that if ≿ satisfies

Axioms 1-8, then ≿u satisfies the suitably adapted versions of Axioms 1-8. The formal

description of the axioms are as below.

Axiom B.1—Weak Order: ≿u is complete and transitive.

Axiom B.2—Continuity: For any Fu, the sets {Gu : Gu ≿u Fu}, {Gu : Fu ≿u Gu} are closed.

Axiom B.3—Independence: For any Fu,Gu,Hu and any α ∈ (0, 1),

Fu ≿u Gu ⇐⇒ αFu + (1− α)Hu ≿u αGu + (1− α)Hu.

We can define the notion of a critical direction and a critical menu within a direction with

respect to ≿u in a similar way that is defined in the main text.

Axiom B.4—Finiteness: There exists a natural number N such that

4.1. For every Fu ∈ Du, there exists Gu with |Gu| < N such that Gu is critical for Fu;

4.2. For every Fu ∈ Du and every Fu ∈ Fu, there exists Gu with |Gu| < N such that Gu is

critical for Fu in Fu.

Axiom B.5—Ex-Ante Regret: If {Fu} ≿u {Gu} and Fu ∈ Fu, then Fu ≿ Fu ∪ {Gu}.

Axiom B.6—Interim Preference for Flexibility: For any Fu and any Fu, Gu, Fu ∪ {Fu ∪Gu} ≿u

Fu ∪ {Fu, Gu}.
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Axiom B.7—Nontriviality: There exist Fu,Gu ∈ Du such that Fu ⊇ Gu and Fu ≻u Gu.

We can define the notion of domination with respect to utility acts, utility menus and utility

directions in a similar way those are defined in the main text.

Axiom B.8—Domination:

• If fu dominates gu, then fu ≿u gu and {{fu, gu} ∼u {{fu}};

• If Fu dominates Gu, then Fu ∼u Fu ∪Gu.

Lemma 22: If a binary relation ≿ over directions satisfies Axioms 1-8, then the induced

binary relation ≿u over utility directions satisfies Axioms B.1-B.8.

Proof. See Appendix D.1.

This completes the first step in our translation.

Step 2: Translate the preference over utility directions to a preference over

menus of menus of lotteries.

Recall that Fu is the collection of all utility acts and we can identify Fu with the set of all

n-dimensional vectors where each entry is in [0, 1]. That is, F = [0, 1]n, where n = |Ω| is
the cardinality of the state space Ω.

For convenience, let Ω = {ω1, . . . , ωn}, and introduce an artificial state ω0 and a new

space F ′ defined by

F ′ :=

{
f ′ ∈ [0, n]× [0, 1]n

∣∣∣∣∣
n∑

i=0

f ′(ωi) = n

}
. (40)

For notational simplicity, we suppress the subscript u but one should keep in mind that

these are still interepreted as utility acts.

Endow F ′ with the standard Euclidean metric. Consider r : F ′ → Fu where r(f ′) is

the vector in F that agrees with the last n components of f ′, that is,

r(f ′) ∈ Fu with [r(f ′)](ωi) = f ′(ωi), ∀i ∈ {1, 2, . . . , n}.

It is easy to verify that r is a homeomorphism between F ′ and Fu. Let r−1 denote its

inverse.

Let M′ denote the set of nonempty compact subsets of F ′, with typical elements F ′, G′.

Endow M′ with the Hausdorff metric. Let D′ denote the set of nonempty compact subsets

of M′, with typical elements F′,G′. Endow D′ with the Hausdorff metric.
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We slightly abuse notation and let r also denote the homeomorphism from M′ to Mu

and D′ to Du, with r(F ′) = {r(f ′) | f ′ ∈ F ′} ∈ Mu and r(F′) = {r(F ′) | F ′ ∈ F′} ∈ Du.

With this construction, we can define a preference ≿∗ over D′ by

F′ ≿∗ G′ if r(F′) ≿u r(G′).

To move on, we introduce yet another new space by

F ′′ :=

{
f ′′ ∈ [0, n]n+1

∣∣∣∣∣
n∑

i=0

f ′′(ωi) = n

}
.

Endow F ′′ with the standard Euclidean metric. Let M′′ denote the set of nonempty

compact subsets of F ′′, with typical elements F ′′, G′′. Endow M′′ with the Hausdorff

metric. Let D′′ denote the set of nonempty compact subsets of M′′, with typical elements

F′′,G′′. Endow D′′ with the Hausdorff metric.

Fix a menu F n+1 defined by

F n+1 :=

{(
n

n+ 1
, . . . ,

n

n+ 1

)}
.

Then F n+1 ∈ M′. Also observe that for any F ′′ ∈ M′′ and ε ≤ 1
n2 ,

εF ′′ + (1− ε)F n+1 =

{
εf ′′ + (1− ε)

(
n

n+ 1
, . . . ,

n

n+ 1

) ∣∣∣∣∣ f ′′ ∈ F ′′

}
∈ M′.

Finally, define a relation ≿∗∗ on D′′ by: F′′ ≿∗∗ G′′ if

εF′′ + (1− ε){F n+1} ≿∗ εG′′ + (1− ε){F n+1} for all ε <
1

n2
.

We then show that if ≿u satisfies Axioms B.1-B.8, then ≿∗ satisfies the suitably adapted

versions of Axioms B.1-B.8. These adapted axioms are listed as Axioms B.1*-B.8*.

Axiom B.1*—Weak Order: ≿∗ is complete and transitive.

Axiom B.2*—Continuity: For any F′, the sets {G′ : G′ ≿∗ F′}, {G′ : F′ ≿∗ G′} are closed.

Axiom B.3*—Independence: For any F′,G′,H′ and any α ∈ (0, 1),

F′ ≿∗ G′ ⇐⇒ αF′ + (1− α)H′ ≿∗ αG′ + (1− α)H′.

We can define the notion of a critical direction and a critical menu within a direction with

respect to ≿∗ in a similar way as before.

Axiom B.4*—Finiteness: There exists a natural number N such that

4.1. For every F′ ∈ D′, there exists G′ with |G′| < N such that G′ is critical for F′;
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4.2. For every F′ ∈ D′ and every F ′ ∈ F′, there exists G′ with |G′| < N such that G′ is critical

for F ′ in F′.

Axiom B.5*—Ex-Ante Regret: If {F ′} ≿∗ {G′} and F ′ ∈ F′, then F′ ≿∗ F′ ∪ {G′}.

Axiom B.6*—Interim Preference for Flexibility: For any F′ ∈ D′ and any F ′, G′ ∈ M′, F′ ∪
{F ′ ∪G′} ≿∗ F′ ∪ {F ′, G′}.

Axiom B.7*—Nontriviality: There exist F′,G′ ∈ D′ such that F′ ⊇ G′ and F′ ≻∗ G′.

Axiom B.8*—Inclusion: If G′ ⊆ F ′ and F ′ ∈ F′, then F′ ∪ {G′} ≿∗ F′.

Note that Axiom B.8* (Inclusion) is not explicitly stated in Axioms B.1-B.8, it is

implied from part 2 of Axiom B.8 (Domination) and closely related to Axiom A.7.

Lemma 23: If a binary relation ≿u over utility directions satisfies Axioms B.1-B.8, then

the induced binary relation ≿∗ over D′ satisfies Axioms B.1*-B.8*.

Proof. See Appendix D.2.

Step 3: Verify that ≿∗∗ is the unique extension of ≿∗ to D′′ satisfying adapted

versions of Axioms B.1*-B.8* if ≿∗ satisfies Axioms B.1*-B.8*.

The construction of ≿∗ and ≿∗∗ in Step 2 is the same as that in Dillenberger, Lleras,

Sadowski, and Takeoka (2014).

We proceed by first listing the adapted versions of Axioms B.1*-B.8*.

Axiom B.1**—Weak Order: ≿∗∗ is complete and transitive.

Axiom B.2**—Continuity: For any F′′, the sets {G′′ : G′′ ≿∗∗ F′′}, {G′′ : F′′ ≿∗∗ G′′} are closed.

Axiom B.3**—Independence: For any F′′,G′′,H′′ and any α ∈ (0, 1),

F′′ ≿∗∗ G′′ ⇐⇒ αF′′ + (1− α)H′′ ≿∗∗ αG′′ + (1− α)H′′.

We can define the notion of a critical direction and a critical menu within a direction with

respect to ≿∗∗ in a similar way as before.

Axiom B.4**—Finiteness: There exists a natural number N such that

4.1. For every F′′ ∈ D′′, there exists G′′ with |G′′| < N such that G′′ is critical for F′′;

4.2. For every F′′ ∈ D′′ and every F ′′ ∈ F′′, there exists G′′ with |G′′| < N such that G′′ is

critical for F ′′ in F′′.
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Axiom B.5**—Ex-Ante Regret: If {F ′′} ≿∗∗ {G′′} and F ′′ ∈ F′′, then F′′ ≿∗∗ F′′ ∪ {G′′}.

Axiom B.6**—Interim Preference for Flexibility: For any F′′ ∈ D′′ and any F ′′, G′′ ∈ M′′,

F′′ ∪ {F ′′ ∪G′′} ≿∗∗ F′′ ∪ {F ′′, G′′}.

Axiom B.7**—Nontriviality: There exist F′′,G′′ ∈ D′′ such that F′′ ⊇ G′′ and F′′ ≻∗∗ G′′.

Axiom B.8**—Inclusion: If G′′ ⊆ F ′′ and F ′′ ∈ F′′, then F′′ ∪ {G′′} ≿∗∗ F′′.

Lemma 24: If a binary relation ≿∗ over D′ satisfies Axioms B.1*-B.8*, then the induced

binary relation ≿∗∗ over D′′ satisfies Axioms B.1**-B.8**.

Proof. See Appendix D.3.

Step 4: Apply Theorem 6 in Appendix A and translate the resulting PR rep-

resentation to a SIT representation.

We are very close to a SIT representation. We proceed by first rescaling every element of

F ′′ with factor 1
n
. The rescaling will give us a unit simplex and make the corresponding

domain D′′ formally equivalent to the choice domain in Appendix A.

Through steps 2 and 3, we have verified that if a binary relation ≿ over the direction

of acts satisfies Axioms 1-8, then the binary relation ≿∗∗ defined over D′′ in step 2 satisfies

Axioms B.1**-B.8**, and it is uniquely derived from the original binary relation ≿ over

directions of acts. Therefore, we can apply Theorem 6 to conclude that there exists a

finitely-supported probability measure µ̂ over Û (the set of doubly normalized expected

utilities over ∆(Ω̂) where Ω̂ = Ω ∪ {ω0}) and a scalar K̂ ≥ 0 such that ≿∗∗ can be

represented by

Ŵ (F′′) = max
F ′′∈F′′

(1 + K̂)
∑

û∈supp(µ̂)

µ̂(û) max
f ′′∈F ′′

û(f ′′)

− K̂
∑

û∈supp(µ̂)

µ̂(û) max
F ′′∈F′′

max
f ′′∈F ′′

û(f ′′)

(41)

where û(f ′′) is the expected utility for lottery f ′′ under taste û. That is,

û(f ′′) =
∑
ω̂∈Ω̂

û(ω̂)f ′′(ω̂) for any û ∈ Û and f ′′ ∈ F ′′.

Moreover, µ̂ is uniquely identified (Lemma 13), and K̂ is uniquely identified when |supp(µ̂)| >
1 (Theorem 8). Note that Ŵ also represents ≿∗ when restricting to D′.

To get to the SIT representation, we aim for a representation for ≿ of the form

V (F) = max
F∈F

(1 +K)
∑

π∈supp(ν)

ν(π)max
f∈F

uπ(fu)

−K
∑

π∈supp(ν)

ν(π)max
F∈F

max
f∈F

uπ(fu) (42)
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where ν is a finitely-supported probability measure over ∆(Ω) representing a distribution

over posteriors induced by a prior and an information structure, and

uπ(fu) :=
∑
ω∈Ω

π(ω)fu(ω) for all fu ∈ Fu and π ∈ ∆(Ω).

We now explore the additional constraint imposed on Ŵ by Axiom B.8.

Lemma 25: Suppose ≿∗∗ has a representation as defined in equation (41) and ≿u

satisfies Axiom B.8, then û(ω) ≥ û(ω0) for any û ∈ supp(µ̂) and any ω ∈ Ω.

Proof of Lemma 25. Suppose by contradiction that ≿∗∗ can be represented as in equation

(41), ≿u satisfies Axiom B.8, but there exists û∗ ∈ supp(µ̂) and ω∗ ∈ Ω such that û∗(ω0) >

û∗(ω∗). We want to derive a contradiction. Let

f ′ := (n− ε, 0, . . . , 0, ε, 0, . . . , 0) (43)

where n− ε is assigned to state ω0, ε is assigned to state ω∗ and 0 is assigned to any other

state. We can find ε small enough so that f ′ ∈ F ′. Let

g′ := (n, 0, . . . , 0) (44)

where n is assigned to state ω0 and 0 is assigned to any state ω ∈ Ω. Therefore, r(f ′)

dominates r(g′) (recall that the notion of domination is defined over Fu and thus only

concerns the last n coordinates).

Thus, part 1 of Axiom B.8 dictates that {{r(f ′)}} ∼u {{r(f ′), r(g′)}}, and by the

definition of ≿∗, we must have {{f ′}} ∼∗ {{f ′, g′}}.
Note that for any û ∈ supp(µ̂),

û(f ′) = (n− ε)û(ω0) + εû(ω∗)

û(g′) = nû(ω0)

In particular,

û∗(f
′)− û∗(g

′) = ε
(
û∗(ω∗)− û∗(ω0)

)
< 0.

Therefore,

Ŵ ({{f ′, g′}}) =
∑

û∈supp(µ̂)

µ̂(û)
[
û(f ′) ∨ û(g′)

]
=
∑
û̸=û∗

µ̂(û)
[
û(f ′) ∨ û(g′)

]
+ µ̂(û∗)û∗(g

′)

>
∑
û̸=û∗

µ̂(û)û(f ′) + µ̂(û∗)û∗(f
′)

= Ŵ ({{f ′}})

contradicting {{f ′, g′}} ∼∗ {{f ′}}. This completes the proof of Lemma 25.
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Given our construction of Ŵ , there are two normalizations we can do that will allow

us to replace the finitely-supported probability measure µ̂ on Û with a unique finitely-

supported probability measure ν on ∆(Ω).

For all ω ∈ Ω and for all û, define

ξ(û(ω)) := û(ω)− û(ω0).

Since
∑n

i=0 f
′(ωi) = n for all f ′ ∈ F ′ and ξ simply adds a constant to every û,

argmax
f ′′∈F ′′

(
n∑

i=0

f ′′(ωi)ξ(û(ωi))

)
= argmax

f ′′∈F ′′

(
n∑

i=1

f ′′(ωi)û(ωi)

)
for all F ′′ ∈ M′′ and all û ∈ supp(µ̂). Furthermore, by Lemma 25, ξ(û(ω)) ≥ 0 for all

ω ∈ Ω and all û ∈ supp(µ̂).

Therefore, we could transform ξ ◦ û : Ω → R into a probability measure πû. This can

be done by letting πû ∈ ∆(Ω) be defined by

πû(ω) :=
ξ(û(ω))∑

ω′∈Ω ξ(û(ω′))
for each ω ∈ Ω.

Finally, we can get the SIT representation by adjusting the weights on each πû by defining

ν ∈ ∆0(∆(Ω)) by

ν(πû) :=

∑
ω∈Ω ξ(û(ω))∑

û′∈supp(µ̂)
∑

ω∈Ω ξ(û′(ω))
µ̂(û).

This will give us the representation we aim for.

Lastly, we can let the set of signal realizations S equal to {1, 2, . . . ,m} where m =

|supp(ν)| is the size of the support for ν, and the conditional probability distributions

σ(s | ω) can be uniquely determined.

C Other Omitted Proofs

C.1 Proof of Theorem 2

Proof. The uniqueness of the SIT representation follows from the uniqueness of the PR

representation. Note that through the proof of Theorem 1, we have established that if ≿

has a SIT representation with parameters (π, u,K, σ), then the translated preference ≿∗∗

has a PR representation with parameters (ν,K) where ν is a distribution over posteriors

induced by π and σ and K is a non-negative regret intensity level.

Therefore, if (π0, u0, K0, σ0) and (π, u,K, σ) both represent ≿ through a SIT represen-

tation, then (ν0, K0) and (ν,K) both represent the induced preference ≿∗∗ through a PR

representation. Then we can apply Lemma 13 and Theorem 8 to conclude that ν0 = ν and

K0 = K whenever |supp(ν)| > 1. This completes the proof.
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C.2 Proof of Lemma 1

Proof.

Only if. Suppose ≿ has an aligned IT representation, then ≿ must be complete and

transitive. Moreover, each ≿σ has a SIT representation with parameters (π, u, iσ, Kσ),

then by Theorem 1, ≿σ satisfies Axioms 2-8 for each σ ∈ I. We now verify that ≿ satisfies

Stable Preference over Acts and Act Independence.

First note that for any act f ∈ F and any σ ∈ I, the value of f under W is independent

of σ since

W (f, σ) =
∑
ω∈Ω

π(ω)u(f(ω)).

Therefore, Stable Preference over Acts must be satisfied.

To show that ≿ satisfies Act Independence, note that W is affine in its first argument.

That is, for any F,G ∈ D and any fixed information structure σ ∈ I,

W (αF+ (1− α)G, σ) = αW (F, σ) + (1− α)W (G, σ).

Therefore, for any F,G ∈ D, σ, σ′ ∈ I and α ∈ (0, 1),

(αF+ (1− α)h, σ) ≿ (αG+ (1− α)h, σ′)

⇐⇒ W (αF+ (1− α)h, σ) ≥ W (αG+ (1− α)h, σ′)

⇐⇒ αW (F, σ) + (1− α)W (h, σ) ≥ αW (G, σ′) + (1− α)W (h, σ′)

⇐⇒ W (F, σ) ≥ W (G, σ′)

⇐⇒ (F, σ) ≿ (G, σ′)

where the penultimate equivalence follows from the above result that W (h, σ) = W (h, σ′).

This completes the proof of the “only if” part.

If. Suppose ≿ satisfies Weak Order, Stable Preference for Acts and Act Independence,

and ≿σ satisfies Axioms 2-8 for each σ ∈ I, we want to show that ≿ has an aligned

informational tradeoff representation.

As mentioned in the main text, ≿ being complete and transitive implies that ≿σ is

complete and transitive for each σ ∈ I. Therefore, we can apply Theorem 1 to conclude

that each conditional ≿σ has a SIT representation V σ with parameters (πσ, uσ, Kσ, iσ).

Lemma 26: If ≿ satisfies Stable Preference over Acts, then there exists π ∈ ∆(Ω) and

u : ∆(X) → R such that πσ = π and uσ = ασu + bσ for some ασ > 0 and bσ ∈ R for all

σ ∈ I.
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Proof of Lemma 26. Note that when restricting to acts,

V σ(f) =
∑
ω∈Ω

πσ(ω)uσ(f(ω)) for any act f ∈ F .

That is, each V σ reduces to a subjective expected utility representation with parameters

(πσ, uσ) when restricting to acts. Suppose ≿ satisfies Stable Preference over Acts, then

f ≿σ g if and only if f ≿σ′
g for any acts f, g and any information structures σ, σ′.

Therefore, ≿σ and ≿σ′
induce the same preference over acts. Then the result follows

directly from the uniqueness result of the Anscombe-Aumann framework (see Kreps (2018)

for one treatment).

We are not quite done yet as we have not established that ≿ actually has a utility

representation. We can take care of this using the other axiom, Act Independence. Let

Ṽ σ be a SIT representation with parameters (π, u,Kσ, iσ) where π, u are as characterized

in Lemma 26. Then Ṽ σ represents ≿σ for each σ ∈ I.
Consider a function W : D × I → R defined by

W (F, σ) := Ṽ σ(F).

Suppose ≿ also satisfies Act Independence, we will now show that ≿ can be represented

by W . That is, we want to show that (F, σ) ≿ (G, σ′) if and only if W (F, σ) ≥ W (G, σ′).

Fix two pairs (F, σ) and (G, σ′).

Lemma 27: There exist acts f, g, h and α ∈ (0, 1] such that

(αF+ (1− α)h, σ) ∼ (f, σ)

(αG+ (1− α)h, σ′) ∼ (g, σ′)

Proof of Lemma 27. It is without loss to normalize the taste function u : ∆(X) → R to

have range [0, 1] (one way to do this is to assign utility 0 to the worst outcome in X and

utility 1 to the best outcome in X and this is always doable since X is finite). Moreover,

u : ∆(X) → [0, 1] is surjective, so for any a ∈ [0, 1], there exists an act f ∈ F such that

Ṽ σ(f) = a for all σ ∈ I. Using this, we can show that the value of any menu F ∈ M under

any information structure is in [0, 1], that is, 0 ≤ Ṽ σ(F) ≤ 1 for any F ∈ M and σ ∈ I.
Finally, this indicates that Ṽ σ(F) ≤ Ṽ σ(M(F)) ≤ 1 for any direction F and information

structure σ ∈ I. Therefore, for any act h and any σ ∈ I,

Ṽ σ
(
αF+ (1− α)h

)
= αṼ σ(F) + (1− α)Ṽ σ(h)

Ṽ σ′
(
αG+ (1− α)h

)
= αṼ σ′

(G) + (1− α)Ṽ σ′
(h)
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By our arguments above, there exists h such that Ṽ σ(h) = Ṽ σ′
(h) = 1. Therefore for

such an h, Ṽ σ(h) ≥ Ṽ σ(F) and Ṽ σ′
(h) ≥ Ṽ σ′

(G), which further implies that we can find

α∗ ∈ (0, 1] such that

Ṽ σ
(
α∗F+ (1− α∗)h

)
= α∗Ṽ σ(F) + (1− α∗)Ṽ σ(h) ≥ 0

Ṽ σ′
(
α∗G+ (1− α∗)h

)
= α∗Ṽ σ′

(G) + (1− α∗)Ṽ σ′
(h) ≥ 0

By the surjectivity of u, this guarantees the existence of some acts f, g ∈ F such that

(α∗F+ (1− α∗)h, σ) ∼ (f, σ)

(α∗G+ (1− α∗)h, σ′) ∼ (g, σ′)

This completes the proof.

Fix two pairs (F, σ) and (G, σ′). Let f, g, h and α ∈ (0, 1] be as characterized from

Lemma 27. Then

(F, σ) ≿ (G, σ′) ⇐⇒ (αF+ (1− α)h, σ) ≿ (αG+ (1− α)h, σ′)

⇐⇒ (f, σ) ≿ (g, σ′)

⇐⇒ (f, σ) ≿ (g, σ)

⇐⇒
∑
ω∈Ω

π(ω)u(f(ω)) ≥
∑
ω∈Ω

π(ω)u(g(ω))

⇐⇒ W (αF+ (1− α)h, σ) ≥ W (αG+ (1− α)h, σ′)

⇐⇒ W (F, σ) ≥ W (G, σ′)

The first equivalence holds since ≿ satisfies Act Independence. The second equivalence

holds by the construction of f, g, h and α. The third equivalence follows from ≿ satisfying

Stable Preference for Acts. The fourth equivalence holds since Ṽ σ represents ≿σ. The

fifth equivalence holds since W (F, σ) = Ṽ σ(F) so W (·, σ) can represent ≿σ and (αF +

(1 − α)h, σ) ∼ (f, σ) by construction. The last equivalence holds since W is affine in the

directions.

This completes the proof of the sufficiency of the axioms since W is by definition an

aligned informational tradeoff representation.

C.3 Proof of Lemma 2

Proof. If. If io induces a degenerate distribution over posteriors, ≿o is represented by

V o(F) = max
F∈F

max
f∈F

∑
ω∈Ω

π(ω)u(f(ω)). (45)
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If V o({F}) ≥ V o({G}), then V o({F ∪ G}) = V o({F}), so Strategic Rationality when No

Information (SRNI) is satisfied.

Only if. Suppose io induces a non-degenerate distribution over posteriors, that is, the sup-

port of the induced distribution over posteriors contains at least two different elements, µ1

and µ2. Then by a standard result, there exist two acts f and g such that f yields a strictly

higher expected utility than g given posterior µ1 and g yields a strictly higher expected

utility than f given posterior µ2. Therefore, V
o({{f, g}}) > max{V o({{f}}), V o({{g}})},

violating SRNI. Taking the contrapositive completes the proof.

C.4 Proof of Lemma 3

Proof. Only if. Suppose ≿ has a regret-varying IT representation, then ≿ has an aligned

informational tradeoff representation with iσ = σ for each σ ∈ I. Therefore, we can apply

Lemma 1 to conclude that ≿ satisfies Weak Order and Act Independence, and ≿σ satisfies

Axioms 2-8 for each σ ∈ I. Further more, ≿o can be represented by (π, u,Ko, o), therefore,

we can apply Lemma 2 to conclude that ≿ satisfies SRNI.

We now check that ≿ must satisfy Reduction. Note that the regret terms are zero for

singleton directions {F} and {Fσ}. Moreover,

W ({Fσ}, o) = max
f∈Fσ

∑
ω∈Ω

π(ω)u(f(ω))

= max
γ∈FS

∑
ω∈Ω

π(ω)u
(
γσ(ω)

)
= max

γ∈FS

∑
ω∈Ω

π(ω)u

(∑
s∈S

σ(s | ω)[γ(s)](ω)

)
= max

γ∈FS

∑
ω∈Ω

π(ω)
∑
s∈S

σ(s | ω)u
(
[γ(s)](ω)

)
=
∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

= W ({F}, σ)

where the second equality follows from the construction of Fσ, the third equality follows

from the definition of an induced act γσ, the fourth equality follows from u being an

affine function, and the fifth equality follows from the fact that maximizing over the set

of all plans is equivalent to maximizing over the menu of acts contingent on each signal

realization. Therefore, ≿ must satisfy Reduction.

If. Suppose ≿ satisfies Weak Order, Act Independence, SRNI and Reduction, and ≿σ
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satisfies Axioms 2-8 for each σ ∈ I, we want to show that ≿ has a regret-varying IT

representation.

As argued in the main text, if ≿ satisfies Weak Order and Reduction, then ≿ satisfies

Stable Preference over Acts. Therefore, we can apply Lemma 1 to conclude that ≿ has

an aligned informational tradeoff representation with parameters
(
π, u,

(
Kσ
)
σ∈I ,

(
iσ
)
σ∈I

)
,

we want to show that if ≿ satisfies SRNI and Reduction, then iσ and σ induce the same

distribution over posteriors given π for any σ ∈ I.
By Lemma 2, SRNI implies that io coincides with o, that is,

W (F, o) = max
F∈F

max
f∈F

∑
ω∈Ω

π(ω)u(f(ω)).

By Reduction, W ({F}, σ) = W ({Fσ}, o) for any menu F ∈ M and information structure

σ ∈ I. Note that

W ({F}, σ) =
∑
t∈Sσ

max
f∈F

∑
ω∈Ω

π(ω)iσ(t | ω)u(f(ω))

W ({Fσ}, o) =
∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

where the first equation follows from applying W to the pair ({F}, σ) and Sσ is the set

of signal realizations for the identified information structure iσ, that is, iσ : Ω → ∆(Sσ).

The second equation follows from the previous derivation in the proof for the necessity

of Reduction (S is the set of signal realizations for σ and generally different from Sσ).

Therefore, σ and iσ must induce the same distribution over posteriors (otherwise, by a

standard result, we can find a menu F such thatW ({F}, σ) ̸= W ({Fσ}, o)). This completes

the proof.

C.5 Proof of Theorem 3

Proof. Only if. Suppose ≿ has an information tradeoff representation, then ≿ has a regret-

varying IT representation with Kσ = K for all σ ∈ I. Therefore, we can apply Lemma 3

to conclude that ≿ satisfies Weak Order, Act Independence, SRNI and Reduction, and ≿σ

satisfies Axioms 2-8 for each σ ∈ I.
We now check that ≿ must satisfy Balance. Note that for any menu F ∈ M and any

information structure σ ∈ I,

W (D(F ), σ) = (1 +K)W ({F}, o)−K ·W ({F}, σ). (46)

Rearranging, we have

W ({F}, o) = 1

1 +K
·W (D(F ), σ) +

K

1 +K
·W ({F}, σ). (47)
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Suppose ({F}, σ) ≻ ({F}, o), then W ({F}, σ) > W ({F}, o), which further indicates that

W ({F}, σ) > W (D(F ), σ), otherwise the above equation cannot hold.

Now further suppose that for some α ∈ (0, 1],(
αD(F ) + (1− α){F}, σ

)
∼ ({F}, o).

Then

W ({F}, o) = α · W̃ (D(F ), σ) + (1− α) ·W ({F}, σ). (48)

For equations (47) and (48) to hold at the same time, it must be that α = 1
1+K

. Then ≿

must satisfy Balance by the fact that equation (47) is an identity that holds for all pairs

(F, σ) ∈ M× I.

If. Suppose ≿ satisfies Weak Order, Act Independence, SRNI, Reduction and Balance, and

≿σ satisfies Axioms 2-8 for each σ ∈ I. We want to show that ≿ has an IT representation.

First, we can apply Lemma 3 to conclude that ≿ has a regret-varying IT representation

with parameters
(
π, u, (Kσ)σ∈I

)
. We want to show that if ≿ also satisfies Balance, then

there exists K ≥ 0 such that setting Kσ = K for all σ ∈ I will deliver the same utility

representation as W .

If some σ induces a degenerate distribution over posteriors, then we can set Kσ to be

any non-negative scalar without affecting the value of W . So we only need to worry about

information structures that induce non-degenerate distributions over posteriors.

Suppose by contradiction that Kσ ̸= Kσ′
for some σ, σ′ ∈ I such that σ and σ′ each

induces a non-degenerate distribution over posteriors. We want to show that Balance must

be violated.

By assumption, we can find menus F and G such that ({F}, σ) ≻ ({F}, o) and

({G}, σ′) ≻ ({G}, o). Let α = 1/(1 + Kσ) and α′ = 1/(1 + Kσ′
), then α ̸= α′. With-

out loss of generality, suppose α > α′. Follow a similar computation in the proof for the

necessity of Balance,(
α′D(F ) + (1− α′){F}, σ

)
≻
(
αD(F ) + (1− α){F}, σ

)
∼ ({F}, o)(

α′D(G) + (1− α){G}, σ′
)
∼ ({G}, o)

which is a direct violation of Balance. This completes the proof of the sufficiency of the

axioms for the existence of an IT representation.

The uniquenuss of an IT representation is an immediate corollary of the uniqueness of

the SIT represenation for each ≿σ.
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C.6 Proof of Theorem 5

Proof of Theorem 5. Since ≿1 and ≿2 agree on their preference over acts, by a standard

result, π1 = π2, u2 = au1 + b for some a > 0 and b ∈ R. Therefore, (π1, u1, K2) also

represents ≿2. Let W1 be the functional representing ≿1 with (π1, u1, K1) and W2 be the

functional representing ≿2 with (π1, u1, K2).

We first show that 2 implies 1. Suppose K1 ≥ K2.

Fix any F ∈ D and σ, σ′ ∈ I such that σ′ ⊵ σ, we want to show that

W2(F, σ)−W2(F, σ′) ≥ 0 =⇒ W1(F, σ)−W1(F, σ′) ≥ 0 (49)

It suffices to show that

W1(F, σ)−W1(F, σ′)

1 +K1

− W2(F, σ)−W2(F, σ′)

1 +K2

≥ 0 (50)

The inequality in (50) holds with the more detailed algebra manipulation as follows.

W1(F, σ)−W1(F, σ′)

1 +K1

− W2(F, σ)−W2(F, σ′)

1 +K2

(51)

=

(
W1(F, σ)
1 +K1

− W2(F, σ)
1 +K2

)
−
(
W1(F, σ′)

1 +K1

− W2(F, σ′)

1 +K2

)
(52)

= − K1

1 +K1

∑
s∈S

σ(s)max
f∈F

U(f, µσ
s ) +

K2

1 +K2

∑
s∈S

σ(s)max
f∈F

U(f, µσ
s ) (53)

+
K1

1 +K1

∑
s′∈S′

σ′(s′)max
f∈F

U(f, µσ′

s′ )−
K2

1 +K2

∑
s′∈S′

σ′(s′)max
f∈F

U(f, µσ′

s′ ) (54)

=

(
K1

1 +K1

− K2

1 +K2

)[∑
s′∈S′

σ′(s′)max
f∈F

U(f, µσ′

s′ )−
∑
s∈S

σ(s)max
f∈F

U(f, µσ
s )

]
(55)

≥ 0 (56)

where the second equality follows from plugging in the equivalent expression of W and

replace maxB∈Fmaxf∈B with maxf∈F, and the last inequality follows from K1 ≥ K2 and

that σ′ is Blackwell more informative than σ.

We then show that 1 implies 2. Suppose ≿1 is more information averse than ≿2.

By way of contradiction, suppose K2 > K1, we want to construct some F such that

(F, o) ≿2 (F, i) but (F, i) ≻1 (F, o) (57)

where o is the fully uninformative experiment and i is the fully informative experiment.

Since ≿1 and ≿2 both have non-trivial preference for information, π1 = π2 is not

degenerate. Thus, we can find two states ω and ω′ such that π1(ω), π1(ω
′) > 0. Let
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η = π1(ω)
π1(ω)+π1(ω′)

. Consider the following three acts f, g, h ∈ F :

u ◦ f u ◦ g u ◦ h
ω 1

η
0 1

ω′ 0 y 1

ω̂ ∈ Ω \ {ω, ω′} 0 0 0

(58)

where y ∈ ( K1

1+K1
, K2

1+K2
). Let F = {{f, g}, {h}}. Then

W1(F, o) = W2(F, o) = max
{
π · 1

η
, (1− η)y, 1

}
= 1 (59)

W1(F, i) = 1 + (1− η)y − (1− η)K1(1− y) > 1 (60)

W2(F, i) = 1 + (1− η)y − (1− η)K2(1− y) ≤ 1 (61)

Such an F can always be constructed when K2 > K1. This completes the proof.

C.7 Proof of Lemma 5

Proof. Combining equations (22) and (23), we see that

Ũ(F,F, µσ
s ) = (1 +K1 +K2)max

f∈F

∑
ω∈Ω

µσ
s (ω)u(f(ω))

−K1

∑
ω∈Ω

µσ
s (ω)max

G∈F
max
g∈F

u(g(ω))−K2

∑
ω∈Ω

µσ
s (ω)max

h∈F
u(h(ω))

(62)

Plug this back to (21), we can write W1 as

W1(F, σ) = max
F∈F

[∑
s∈S

(1 +K0 +K1 +K2)max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

−K2

∑
ω∈Ω

π(ω)σ(s | ω)max
h∈F

u(h(ω))

]
−K0

∑
s∈S

max
G∈F

max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω))

−K1

∑
ω∈Ω

π(ω)max
G∈F

max
g∈G

u(g(ω))

(63)

If K2 = 0, this reduces to

W1(F, σ) = (1 +K0 +K1)max
F∈F

∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

−K0

∑
s∈S

max
G∈F

max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω))

−K1

∑
ω∈Ω

π(ω)max
G∈F

max
g∈G

u(g(ω))

(64)
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Note that the last term does not depend on σ. For convenience, let

U1(F, σ) := max
F∈F

∑
s∈S

max
f∈F

∑
ω∈Ω

π(ω)σ(s | ω)u(f(ω))

U2(F, σ) :=
∑
s∈S

max
G∈F

max
g∈G

∑
ω∈Ω

π(ω)σ(s | ω)u(g(ω))

Therefore,

W1(F, σ) ≥ W1(F, σ′)

⇐⇒ (1 +K0 +K1) · U1(F, σ)−K0 · U2(F, σ) ≥ (1 +K0 +K1) · U1(F, σ′)−K0 · U2(F, σ′)

⇐⇒ 1 +K0 +K1

1 +K1
· U1(F, σ)−

K0

1 +K1
· U2(F, σ) ≥

1 +K0 +K1

1 +K1
· U1(F, σ′)− K0

1 +K1
· U2(F, σ′)

⇐⇒ (1 +K) · U1(F, σ)−K · U2(F, σ) ≥ (1 +K) · U1(F, σ′)−K · U2(F, σ′)

⇐⇒ W (F, σ) ≥ W (F, σ′)

where the third equivalence follows from the assumption that K = K0/(1 +K1).

D Translation from Lotteries to Acts

D.1 Proof of Lemma 22

Proof. We can check that the operation u(·) that maps a primitive (acts, menus or direc-

tions) into its corresponding primitive as in utilities (utility acts, utility menus and utility

directions) behave nicely with set operations and respects linearity. This guarantees that

each Axiom from 1-6 and 8 implies their counterpart in Axiom B.1-B.6 and B.8.

Note that the statement of Axiom B.7 is slightly different from the statement of Axiom

7. We now check that Axioms 1-8 implies Axiom B.7.

First notice that by Axiom 7, there exists lotteries ℓ, ℓ′ ∈ ∆(X) such that ℓ ≻ ℓ′. Since

these are constant acts, it must be that ℓ dominates ℓ′. Then by Axiom 8, {{ℓ}, {ℓ′}} ∼
{{ℓ}}. Then by transitivity, {{ℓ}, {ℓ′}} ≻ {{ℓ′}}. Let F = {{ℓ}, {ℓ′}} and G = {{ℓ′}}.
Then F ⊇ G and F ≻ G.

Then we can apply the definition of ≿u to conclude that u(F), u(G) ∈ Du, and u(F) ⊇
u(G) with u(F) ≻u u(G), Axiom B.7 is satisfied.

D.2 Proof of Lemma 23

Proof that Axiom B.1 implies Axiom B.1*.

Fix any F′,G′ ∈ D′. Then by the completeness of ≿u, either r(F′) ≿u r(G′) or r(G′) ≿u

r(F′) or both, which further indicates that either F′ ≿∗ G′ or G′ ≿∗ F′ or both.
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For transitivity, suppose F′ ≿∗ G′ and G′ ≿∗ H′, then by definition, r(F′) ≿u r(G′) and

r(G′) ≿u r(H′), which implies r(F′) ≿u r(H′) (by the transitivity of ≿u), which further

implies that F′ ≿∗ H′.

Proof that Axiom B.2 implies Axiom B.2*.

Fix any F′ ∈ D′, consider the set {G′ ∈ D′ | F′ ≿∗ G′}. By Axiom B.2, the set {Gu ∈ Du |
r(F′) ≿u G} is closed. Since r is a homeomorphism, it suffices to show that

{G′ ∈ D′ | F′ ≿∗ G′} = r−1
(
{Gu ∈ Du | r(F′) ≿u Gu}

)
.

If F′ ≿∗ G′, then r(F′) ≿u r(G′), thus LHS ⊆ RHS. If r(F′) ≿u Gu, then F′ ≿∗ r−1(Gu),

thus LHS ⊇ RHS. The arguments for {G′ ∈ D′ | G′ ≿∗ F′} are similar.

Proof that Axiom B.3 implies Axiom B.3*. First note that r is linear, that is, for any

F′,G′ ∈ D′ and α ∈ [0, 1],

r(αF′ + (1− α)G′) = αr(F′) + (1− α)r(G′).

Then notice that r−1 is also linear. For any F,G ∈ D and α ∈ [0, 1],

r−1(αF+ (1− α)G) = αr−1(F) + (1− α)r−1(G).

Therefore, for any F′,G′,H′ ∈ D′ and any α ∈ (0, 1],

F′ ≿∗ G′ ⇐⇒ r(F′) ≿u r(G′)

⇐⇒ αr(F′) + (1− α)r(H′) ≿u αr(G′) + (1− α)r(H′)

⇐⇒ r(αF′ + (1− α)H′) ≿u r(αG′ + (1− α)H′)

⇐⇒ αF′ + (1− α)H′ ≿∗ αG′ + (1− α)H′

This is essentially the same proof as the proof of Claim 3 in DLST (2014).

Proof that Axiom B.4 implies Axiom B.4*.

Given ≿u, let N be a natural number satisfying Axiom B.4.

Fix any F′ ∈ D′, by Axiom B.4, there exists Gu ∈ Du such that Gu is critical for r(F′)

with |Gu| < N . Let G′ = r−1(Gu). Then |G′| = |Gu| < N , and for any H′ satisfying

G′ ⊆ H′ ⊆ F′, we have

r(G′) ⊆ r(H′) ⊆ r(F′) =⇒ r(G′) ∼u r(H′) ∼u r(F′) =⇒ G′ ∼∗ H′ ∼∗ F′.

Hence G′ is critical for F′ with |G′| < N . Similar arguments for the second half.
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Proof that Axiom B.5 implies Axiom B.5*.

First notice that for any F ′ ∈ M′, r({F ′}) = {r(F ′)} by construction. Therefore,

{F ′} ≿∗ {G′}, F ′ ∈ F′ =⇒ {r(F ′)} ≿u {r(G′)}, r(F ′) ∈ r(F′)

=⇒ r(F′) ≿u r(F′) ∪ {r(G′)}
=⇒ r(F′) ≿u r(F′ ∪ {G′}) =⇒ F′ ≿∗ F′ ∪ {G′}

This completes the proof.

Proof that Axiom B.6 implies Axiom B.6*.

First note that

r(F′ ∪ {F ′ ∪G′}) = r(F′) ∪ {r(F ′) ∪ r(G′)}

and that

r(F′ ∪ {F ′, G′}) = r(F′) ∪ {r(F ′), r(G′)}.

Since r(F′) ∈ Du, and r(F ′), r(G′) ∈ Mu, then we can use Axiom B.6 to conclude that

r(F′) ∪ {r(F ′) ∪ r(G′)} ≿u r(F′) ∪ {r(F ′), r(G′)},

which further indicates that F′ ∪ {F ′ ∪G′} ≿∗ F′ ∪ {F ′, G′}.

Proof that Axiom B.7 implies Axiom B.7*.

By Axiom B.7, there exists Fu,Gu ∈ Du such that Fu ⊇ Gu and Fu ≻u Gu. Therefore,

r−1(Fu), r
−1(Gu) ∈ D′ satisfy r−1(Fu) ⊇ r−1(Gu) and r−1(Fu) ≻∗ r

−1(Gu).

Proof that Axiom B.8 implies Axiom B.8*.

Suppose G′ ⊆ F ′, then r(G′) ⊆ r(F ′), and by the definition of domination, r(F ′) dominates

r(G′). Suppose F ′ ∈ F′, then r(F ′) ∈ r(F′), and the second part of Axiom B.8 implies that

r(F′) ∼u r(F′) ∪ {r(G′)}, which further indicates that F′ ∼∗ F′ ∪ {G′}.

D.3 Proof of Lemma 24

Before we move on to study the properties of ≿∗∗, we have the following simplifying result

to help up use the definition of ≿∗∗ more easily.

Lemma 28: Suppose ≿u satisfies Axioms B.1-B.3 (Weak Order, Continuity and Inde-

pendence), then ≿∗∗ constructed as in Step 2 will satisfy

F′′ ≿∗∗ G′′ ⇐⇒ 1

n2
F′′ +

(
1− 1

n2

)
{F n+1} ≿∗

1

n2
G′′ +

(
1− 1

n2

)
{F n+1}.
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Proof of Lemma 28. Since ≿u satisfies Axioms B.1-B.3, then by Lemma 23, ≿∗ satisfies

Axioms B.1*-B.3*. Recall that

F n+1 =

{(
n

n+ 1
, . . . ,

n

n+ 1

)}
.

That is, F n+1 is the singleton menu containing only a “uniform lottery.”

“⇐=:” Suppose 1
n2F′′ +

(
1− 1

n2

)
{F n+1} ≿∗

1
n2G′′ +

(
1− 1

n2

)
{F n+1}. We know that

{F n+1} ∈ D′ and ≿∗ satisfies B.3*. Therefore, for any ε ∈ [0, 1/n2), α := n2ε ∈ [0, 1)

and

εF′′ + (1− ε) {F n+1} = α

(
1

n2
F′′ +

(
1− 1

n2

)
{F n+1}

)
+ (1− α){F n+1}

≿∗ α

(
1

n2
G′′ +

(
1− 1

n2

)
{F n+1}

)
+ (1− α){F n+1}

= εG′′ + (1− ε){F n+1}

“=⇒:” Suppose F′′ ≿∗∗ G′′, then we can find a sequence of εn converging from below to

1/n2, then the result follows from the continuity of ≿∗.

An immediate but important implication of Lemma 25 is that the constructed binary

relation ≿∗∗ is uniquely determined by ≿∗.

Moving forward, we will do the operation “mix F′′ with {F n+1} on weight 1/n2” a lot

in the following proofs. For an easier exposition, we give this operation a name by defining

t : D′′ → D′ given by

t(F′′) :=
1

n2
F′′ +

(
1− 1

n2

)
{F n+1} (65)

Proof that Axioms B.1*-B.3* imply Axiom B.1**.

Completeness: Fix any F′′,G′′ ∈ D′′, t(F′′), t(G′′) ∈ D′. By the completeness of ≿∗,

t(F′) ≿∗ t(G′) or t(G′) ≿∗ t(F′) or both. By Lemma 25, Axioms B.1*-B.3* guarantee that

F′′ ≿∗∗ G′′ if and only if t(F′′) ≿∗ t(G′′). Thus, ≿∗∗ is complete.

Transitivity:

F′′ ≿∗∗ G′′, G′′ ≿∗∗ H′′ =⇒ t(F′′) ≿∗ t(G′′), t(G′′) ≿∗ t(H′′)

=⇒ t(F′′) ≿∗ t(H′′)

=⇒ F′′ ≿∗∗ H′′

where the second implication follows from ≿∗ being transitive.
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Proof that Axioms B.1*-B.3* imply Axiom B.2**.

We consider the lower contour set. Same arguments work for the upper contour set.

Fix any sequence {G′′
m}∞m=1 ⊂ {G′′ | F′′ ≿∗∗ G′′}, that is, F′′ ≿∗∗ G′′

m for all m ∈ N,
which further indicates that t(F′′) ≿∗ t(G′′

m) for all m ∈ N. If G′′
m → G′′

∗ as m → ∞
for some G′′

∗ ∈ D′′, then by construction, t(G′′
m) → t(G′′

∗). Since ≿∗ satisfies Continuity

(Axiom B.2*), this implies that t(F′′) ≿∗ t(G′′
∗). Thus, F′′ ≿∗∗ G′′

∗.

Proof that Axioms B.1*-B.3* imply Axiom B.3**.

First note that the mapping t : D′′ → D′ is linear, that is, for any α ∈ [0, 1],

t
(
αF′′ + (1− α)G′′

)
=

1

n2

(
αF′′ + (1− α)G′′

)
+

(
1− 1

n2

)
{F n+1}

=
1

n2

(
αF′′ + (1− α)G′′

)
+

(
1− 1

n2

)(
α{F n+1}+ (1− α){F n+1}

)
= αt(F′′) + (1− α)t(G′′)

Note that the second equality only goes through because F n+1 is a singleton menu. The

decomposition is not generally doable for non-singleton menus.

Using the linearity of t, we prove the following stronger version of Independence. For

any F′′,G′′,H′′ and any α ∈ (0, 1],

F′′ ≿∗∗ G′′ ⇐⇒ t(F′′) ≿∗ t(G′′)

⇐⇒ αt(F′′) + (1− α)t(H′′) ≿∗ αt(G′′) + (1− α)t(H′′)

⇐⇒ t
(
αF′′ + (1− α)H′′

)
≿∗ t

(
αG′′ + (1− α)H′′

)
⇐⇒ αF′′ + (1− α)H′′ ≿∗∗ αG′′ + (1− α)H′′

where the first and the last equivalence follow from Lemma 25, the second equivalence

follows from ≿∗ satisfying Axiom B.3* and the third equivalence follows from the linearity

of t we showed above.

Proof that Axioms B.1*-B.4* imply Axiom B.4**.

First note that the mapping t respects set inclusion, that is, if G′′ ⊆ F′′, then

t(G′′) =
1

n2
G′′ +

(
1− 1

n2

)
{F n+1} ⊆ 1

n2
F′′ +

(
1− 1

n2

)
{F n+1} = t(F′′).

Moreover, |t(F′′)| = |F′′| for any finite F′′.

Now Axiom B.4 implies Axiom B.4*, which guarantees the existence of a natural number

N satisfying the conditions for ≿∗ over D′ corresponding to the two conditions above. We

argue the same N works for ≿∗∗.
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Fix any F′′ ∈ D′′, t(F′′) ∈ D′, and thus by Axiom B.4*, there exists G′ such that G′

is critical for t(F′′) and |G′| < N . Since G′ ⊆ t(F′′), there exists G′′ ⊆ F′′ such that

G′ = t(G′′). So |G′′| = |G′| < N , and we argue that G′′ is critical for F′′. Fix any

H′′ such that G′′ ⊆ H′′ ⊆ F′′, then G′ = t(G′′) ⊆ t(H′′) ⊆ t(F′′). This implies that

G′ ∼∗ t(H′′) ∼∗ t(F′′) since G′ is critical for t(F′′), which further implies that H′′ ∼∗∗ F′′.

Similar arguments work for the second condition.

Proof that Axioms B.1*-B.3* and B.5* imply Axiom B.5**.

First note that the mapping t : D′′ → D′ respects set unions: For any F′′,G′′ ∈ D′′,

t
(
F′′ ∪G′′

)
=

1

n2

(
F′′ ∪G′′

)
+

(
1− 1

n2

)
{F n+1}

=

(
1

n2
F′′ +

(
1− 1

n2

)
{F n+1}

)
∪
(

1

n2
G′′ +

(
1− 1

n2

)
{F n+1}

)
= t(F′′) ∪ t(G′′)

Now suppose F′′ and G′′ satisfy that for any G′′ ∈ G′′, there exists F ′′ ∈ F′′ such that

{F ′′} ≿∗∗ {G′′}, we want to show that F′′ ≿∗∗ F′′ ∪G′′.

For any G′ ∈ t(G′′), there exists G′′ ∈ G′′ such that {G′} = t({G′′}). By assumption,

there exists F ′′ ∈ F′′ such that {F ′′} ≿∗∗ {G′′}. Then t({F ′′}) ≿∗ t({G′′}) = {G′} and

t(F ′′) ∈ t(F′′). (This is an abuse of notation, by t(F ′′) we mean the only menu contained

in t({F ′′}).) Then the assumption in Axiom B.5* is satisfied and we can conclude that

t(F′′) ≿∗ t(F′′) ∪ t(G′′) = t(F′′ ∪G′′), which further indicates that F′′ ≿∗∗ F′′ ∪G′′.

Proof that Axioms B.1*-B.3* and B.6* imply Axiom B.6**.

We first formalize the notation (abuse) appeared above. Let F ′′ ∈ M′′ be a menu, then

t(F ′′) :=
1

n2
F ′′ +

(
1− 1

n2

)
F n+1 ∈ M′.

And t(F ′′ ∪ G′′) = t(F ′′) ∪ t(G′′) for all F ′′, G′′ ∈ M′′. Now for any F′′ ∈ D′′ and any

F ′′, G′′ ∈ M′′, t(F′′) ∈ D′, t(F ′′), t(G′′) ∈ M′. Thus, by Axiom 6*,

t(F′′) ∪ {t(F ′′) ∪ t(G′′)} ≿∗ t(F′′) ∪ {t(F ′′), t(G′′)}.

But t
(
F′′ ∪ {F ′′ ∪G′′}

)
= t(F′′) ∪ {t(F ′′ ∪G′′)} = t(F′′) ∪ {t(F ′′) ∪ t(G′′)}, and similar for

the RHS. Therefore, F′′ ∪ {F ′′ ∪G′′} ≿∗∗ F′′ ∪ {F ′′, G′′}.

Proof that Axioms B.1*-B.3* and B.7* imply Axiom B.7**. If F ′′ ⊇ G′′, then t(F ′′) ⊇
t(G′′), and by Axiom 7*, t(F′′) ∪ {t(F ′′), t(G′′)} ≿∗ t(F′′) ∪ {t(F ′′)}.
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